9. 福井高専のシーズ

(部門別, 50 音順)

部門	氏名	研究分野	専門分野	キーワード	頁
	相場大佑	数学解析	偏微分方程式,数理物理	Schrödinger 作用素,Dirac 作用素,非自 己共役作用素,スペクトル理論,散乱理論	39
	東章弘	スポーツ科学, 応用健 康科学	保健体育, バイオメカニクス, 健康科学	移動運動,健康運動指導,体育 授業研究	40
	伊勢 光	日本文学	日本古典文学 (平安, 鎌倉時代 の物語)	物語,話型,人物,男性/女性	41
	市村葉子	日本語教育,日本語学	日本語教育,日本語学	日本語教育,やさしい日本語,談話文法,会話, イントネーション,文末表現,関連性理論	42
	井之上和代	教科教育学,代数学	数学,数学教育	教材開発、グラフアート、可換環 論、モーデルヴェイユ格子理論	43
	奥村充司	土木環境システム,環境モデ リング・保全修復技術	上下水道工学,水環境学,地盤 環境工学	上水道,下水道,水質調査,地下水汚染,生物指標	44
	門屋飛央	日本語学	日本語学,方言	日本語史,九州方言,福井方言	45
	川畑弥生	刑事法学	刑事政策,少年司法手続	修復的司法,少年司法手続, 社会内処遇	46
	木村弥生	日本史	近現代史,地域史,軍事史,社 会史	海軍,志願兵,地域,兵事資料	47
1 th	佐藤勇一	哲学・倫理学	フランス哲学,現象学	メルロ=ポンティ,間文化性, 視覚論,身体論	48
地域 • →	白﨑恭子	原子・分子, 量子エレ クトロニクス	物理学	ボソン, フェルミオン, 混合系, ボーズ・アインシュタイン凝縮, 不安定性, 転移温度	49
文化部門	中谷実伸	自然科学一般	数学,数学教育	無限可積分系,数学教材開発	50
2	長水壽寛	自然科学一般	数学,数学教育	位相数学 (General Topology), 教材開発、メタ認知	51
	長谷川智晴	(素材・加工部門参照)			107
	原口 治	英語一般	作*リス文学(20世紀小説), 20世紀作*リス文化,技術英語教育	英語、イギリス文学、イギリス 文化、技術英語	52
	挽野真一	物性 II	物性理論	磁性, 超伝導, 近接効果, ジョセフソン効果, スピン依存伝導現象	53
	藤田卓郎	外国語教育	外国語教育	コミュニケーション、タスクを用いた言語指導、 アクション・リサーチ、実践研究法	54
	松井一洋	スポーツ科学	保健体育、バイオメカニクス	足関節ブレース、動作解析	55
	宮本友紀	人文科学一般	英語教育, 言語コミュニケーション	英語教育, コミュニケーション, 言語	56
	森貞	英語全般	英語学, 日本語学, 認知言語学, コーパス言語学	文法、語法、認知モード	57
	柳原祐治	数学基礎,応用数学	確率論,無限粒子系	Percolation, Contact process	58
	山田哲也	数学解析	数学一般,偏微分方程式論	移流拡散方程式	59

部門	氏名	研究分野	専門分野	キーワード	頁
	上島晃智	生化学,分析化学	生化学,微生物学,分析化学	環境浄化,微生物,機能性和紙	60
	小木曽晴信	土木工学	土木工学	測量,地盤,環境,植生,植樹	61
	奥村充司	土木環境システム、環境モデ リング・保全修復技術	上下水道工学,水環境学,地盤環境工学	上水道,下水道,水質調査,地下水汚染,生物指標	62
	片岡裕一	環境動態解析	境動態解析 作業環境測定 玛		63
環境・生態部門	川村敏之	バイオテクノロジー	生物機能,遺伝子工学	バイオテクノロジー, 分子生物 学	64
態部門	後反克典	分析化学	無機分析化学	微量元素分析,環境·材料分析, 高感度分析	65
''	坂元知里	生物機能・バイオプロセス	生物化学,電気化学	電気化学, バイオデバイス, 酵素固定化	66
	髙山勝己	複合化学,農芸化学	分析化学,応用微生物学,生物機能,バイオプロセス	バイオレメディエーション, バイオセ ンサー, バイオリファイナリー	67
	廣部まどか	環境モデリング・保全 修復技術	生態学	里地里山, 生物調査, 保全活動, WBGT	68
	舟洞久人	応用生物化学, 無機化 学	応用生物化学,無機化学,生物 無機化学	生物工学, バイオフィルム, バ イオセンサー	69
	秋山 肇	電力工学,電気機器	半導体工学,電気機器,技術史	パワーエレクトロニクス, テラヘル ツ分光技術, 加速器応用, 博物館学	70
	白﨑恭子	(地域・文化部門参照)			49
エネルギー	高久有一	数理物理・物性基礎	プラズマ科学, 数理物理, 計算 科学	核融合、プラズマ閉じ込め配 位、物理シミュレーション	71
部門	芳賀正和	熱工学	伝熱工学、熱・物質移動	熱伝達促進,数値解析,可視化 実験	72
''	藤田克志	流体工学	流体工学、レオロジー	再生可能エネルギー, 小水力, 粘 弾性流体, CFD, 流れの可視化	73
	山本幸男	電子・電気材料工学	電子デバイス工学、材料物性工学	半導体,薄膜,太陽電池	74
	阿部孝弘	構造工学・地震工学・ 維持管理工学	土木工学,構造工学	亀裂, エネルギ解放率, コンクリート, エンジニアリング・デザイン ほか	75
	岡本拓夫	個体地球惑星物理学	地震学,縮災	福井県及び周辺の地震活動, 地震に関 連する諸現象, 強震動, 防災教育	76
	田安正茂	水工学,海岸工学	土木工学,水工学,海岸工学	豪雨水害,洪水氾濫,波浪変形,漂砂,海岸地形変化	77
安全	辻子裕二	自然災害科学· 防災学	防災学,地盤工学,空間情報学	防災・減災, 地域防災, 地盤防災, 防災ツール	78
安全・防災部門	辻野和彦	空間情報工学	リモートセンシング, 地理情報 システム	土砂災害(斜面崩壊,土石流), 画像計測,UAV,VR	79
部 門	野々村善民	土木工学,建築学	建築環境工学,風工学,建築設備	風環境, 新エネルギー, 都市洪 水	80
	樋口直也	建築構造・材料	建築構造学	アーチ, シェル・空間構造, 座屈, 有限要素法解析	81
	山田幹雄	環境材料・リサイクル	土木工学,地盤環境工学,建設 材料学	廃棄物·副産物利用, 浅層地盤 改良, 土構造物	82
	大和裕也	都市計画·建築計画, 防災学	都市防災計画	避難所運営計画,津波避難計画,MR(Mixed Reality)	83

部門	氏名	研究分野	専門分野	キーワード	頁
	吉田雅穂	地震工学,防災学	土木工学,地震工学,防災学	地震,防災・減災,ライフライ ン,木材,文化遺産	84
	青山義弘	計算機システム	組込みシステム、計算機工学	組込みシステム, FPGA 開発, HDL 設計	85
	大久保茂	通信・ ネットワーク工学	電磁波工学,情報通信工学	アンテナ、ネットワーク、Web アプリケーション	86
	小越咲子	人間情報学	認知科学,福祉工学,教育工学	ICT, BMI (Brain Machine Interface), ソーシャルスキルトレーニング	87
	川上由紀	通信・ ネットワークエ学	アンテナ工学,通信工学	アンテナ、メタマテリアル、 RFID、テラヘルツ分光	88
	小松貴大	認知科学· 知能情報学	認知科学,心理物理	知覚,視覚運動,運動学習	89
	斉藤 徹	計算機システム・ ネットワーク	カメラ情報を利用したロボット 制御, インターネット応用技術	インターネット, 緊急連絡シス テム	90
情報·通信部門	佐々和洋	生体分子科学	生命情報学,計算化学,量子化学	分子シミュレーション	91
信部門	清水幹郎	ソフトウェア	情報学基礎,計算基盤	アルゴリズム理論, プログラミ ング言語, 情報理論	92
	下條雅史	下條雅史 情報学 数値計算,量子物理, 理学		シミュレーション,連続体,フラクタル,素粒子模型	93
	内藤岳史	通信・ ネットワークエ学	情報ネットワーク	IoT, センサーネットワーク, 保育 ICT	94
	中村孝史	電子デバイス・電子機器	情報工学	自動化・安全衛生	95
	波多浩昭	通信・ネットワークエ 学	情報ネットワーク, 通信ソフト ウェア, IP-VPN, プロトコル	インターネット,企業ネットワ ーク,仮想ネットワーク	96
	堀川隼世 電子機器		アンテナ工学,電子デバイス	アンテナ、中赤外光検出器、 シミュレーション	97
	丸山晃生	情報学基礎, 知能情報学	記号論理学、パターン認識	記号論理, エージェント, 画像 認識	98
	荒川正和	電子デバイス・ 電子機器	電子物性,物理学	トンネル現象、音情報処理、新規アク チュエータ、工学教育	99
	加藤寛敬	トライボロジー・ 材料加工	トライボロジー、金属材料、粉末冶金、機械工作法	摩耗,微細組織材料,電子顕微 鏡	100
	北川浩和	(計測・制御部門参照)			122
素材	久保杏奈	電子デバイス・ 電子機器	電気,情報系	ナイロン人工筋肉, アクチュエ ータ, 炭素繊維	101
素材・加工部門	西城理志	電子・電気材料工学	電子工学,物性物理学	太陽電池、ナノ粒子	102
部門	常光幸美	構造・機能材料	材料化学,金属表面化学	ウェットプロセス, 電気化学プロセス	103
	高橋 奨	無機材料・物性	材料工学,誘電体材料,複合材料	結晶構造・組成制御、機能性セ ラミックス材料	104
	津田良弘	有機化学,合成化学	触媒化学	金属ポルフィリン錯体, 金属サレン錯体, 酸化触媒	105
	西野純一	無機材料・物性	無機化学,電気化学,無機材料料学	薄膜, 化学気相析出(CVD)法, ナノ材料, 構造規制	106

部門	氏名	研究分野	専門分野	キーワード	頁
	長谷川智晴	機能物性化学関連	ガラス材料・光物性	ガラス・セラミックス・光吸 収・屈折率・光ファイバー	107
	藤田祐介	加工学	加工学,機械設計	機械加工,機械設計,安全	108
	古谷昌大	機能物性化学, 高分子化学	有機材料科学。高分子化学		109
	堀井直宏	無機材料·物性, 科学教育	非晶質材料, 科学教育, サイエンスリテラシー	シリカガラス、石英、失透、結 晶化、ガラス、失透抑制	110
素材	松井栄樹	機能物質化学	生物有機化学,機能材料化学,合成化学	機能性色素,天然高分子材料, 金属錯体,生体分子	111
素材・加工部門	松浦 徹	物性 II, ナノマイクロ システム	凝縮系物理学,電子物性	電気輸送計測、MEMS/NEMS, 低温実験、超伝導・密度波	112
部門	村中貴幸	生産工学・加工学	塑性加工学,材料力学	板成形、焼付き、チタン	113
	安丸尚樹	ナノ材料工学	材料工学、表面工学、レーザー加工	表面改質、フェムト秒レーザー、ナノ構造、硬質薄膜	114
	山田健太郎	生産工学・加工学	機械設計,加工学	機械設計,機械加工	115
	山本裕之	ナノ材料化学	セルロース科学	セルロース, 紙, 構造, ナノファイバー	116
	山脇夢彦	有機化学, グリーン・ 環境科学	有機化学,光化学,医薬品合成	反応有機化学,有機合成化学, 有機光化学,ファインケミカル	117
	青木宏樹	身体教育学	測定評価,発育発達,体育科教育	体力測定、子ども、運動遊び	118
	伊勢大成	知能機械学・ 機械システム	センサ工学、品質工学	インテリジェントタイヤ、パラメータ設計、機能性評価	119
	金田直人	機械力学・制御	機械設計法,機構学	繊維,機構設計,画像処理,数 値計算,シーケンス制御	120
	亀山建太郎	制御・ロボティクス	制御工学、ロボット工学	制御、モデリング、システム同定、信号処理、移動ロボット、農工連携	121
	北川浩和	機械工学	加工学,知能機械学	機械加工,汎用工作機械,電子工作,電気工事,組込み型マイコン	122
計	北野公崇	機械工学	精密計測・幾何光学	光ファイバ変位計, 3次元特性, 等方性	123
測	小松貴大	(情報・通信部門参照)			89
計測・制御部門	佐藤 匡	自動制御	自動制御, 自動計測	予見制御, スライディングモー ド制御, 入力制限問題	124
1-3	千徳英介	機械工学	生産工学,加工学	温度計測, 切削抵抗, 工具磨耗, レーザフォーミング	125
	田中嘉津彦	流体工学	液圧工学, トライボロジー	液圧機器、トライボロジー、 最適設計	126
	西 仁司	知覚情報処理	シミュレーション,信号解析, 工学教育	歩行ロボット、画像解析、 ものづくり	127
	林田剛一	機械力学・制御	機械設計, 繊維	仮撚加工,機械設計,シーケン ス制御,空圧機器	128
	村田知也	知覚情報処理・ 知能ロボティクス	制御工学,画像処理,パターン 認識,ゲーム学	ロボット経路計画,画像認識,ゲームアプリ	129
	米田知晃	計測工学	イオンビーム工学, センサエ 学, 計測工学	イオンビーム, 放射線, センサ, 回路設計	130

所属部門	地域・文化	環境・生態	エネルギー	安全・防災	情報・通信	素材・加工	計測・制御
			藤田克志			加藤寛敬	田中嘉津彦
機械			⊚芳賀正和			村中貴幸	◎亀山建太郎
工学科						高橋 奨	千徳英介
						安丸尚樹	金田直人
			.1. + + =		上 .1. 日 止	* -	伊勢大成
電気電子			山本幸男 秋山 肇		丸山晃生 堀川隼世	荒川正和 松浦 徹	佐藤 匡 米田知晃
工学科			1人山 軍		大久保茂	西城理志	不叫从光
			○高久有一		斉藤 徹		西 仁司
					青山義弘		○村田知也
電子情報					波多浩昭		小松貴大
工学科					◎小越咲子		
					川上由紀		
					小松貴大 下條雅史		
		上島晃智			○佐々和洋	津田良弘	
		髙山勝己				○常光幸美	
物質		⊚後反克典				松井栄樹	
工学科		川村敏之				◎西野純一	
		○坂元知里				古谷昌大	
		奥村充司		吉田雅穂		山脇夢彦	
	类们儿问	突们儿미		五 田 雅 徳 辻 子 裕 二			
				野々村善民			
環境都市				辻野和彦			
工学科				⊚田安正茂			
二子 称				○樋口直也			
				大和裕也			
				山田幹雄 阿部孝弘			
	長水壽寛			岡本拓夫		長谷川智晴	 青木宏樹
	柳原祐治					山本裕之	
	井之上和代						
#0.74 E	山田哲也						
一般科目	中谷実伸						
(自然系)	相場大佑 ◎長谷川智晴						
	投野真一 挽野真一						
	東章弘						
	松井一洋						
	市村葉子						
	伊勢光						
	門屋飛央						
一般科目	佐藤勇一 O川畑弥生						
(人文系)	木村美幸						
	森貞						
	原口治						
	宮本友紀						
	藤田卓郎	1 1 34 - 4			\— 1 ± 4 + =	II. consulted	
	白﨑恭子	小木曽晴信	白﨑恭子		清水幹郎	北川浩和	北川浩和
教育研究		廣部まどか 舟洞久人			中村孝史 内藤岳史	藤田祐介 山田健太郎	北野公崇
支援センター		片岡裕一			PIW田义	久保杏奈	林田剛一
		7 1 PV 1 H				堀井直宏	

所属部門	地域・文化	専門分野
研究分野	数学解析	[[] [] [] [] [] [] [] [] [] [
	相場 大佑 助教 一般科目教室(自然科学系) 応用数学 aiba@fukui-nct.ac.jp	キーワード Schrödinger 作用素、Dirac 作用素、非自己共役作用素、スペクトル理論、散乱理論 所属学協会・研究会 日本数学会

研究テーマ

【スペクトル理論】

これまでの研究としては、

関数解析的手法を用いて、数理物理に現れる偏微分方程式の数学的研究、

特に原子や分子などのミクロな粒子の運動を記述する量子力学の基礎方程式である。

シュレーディンガー方程式或いは、それに伴うシュレーディンガー作用素のスペクトル理論の研究を行ってきました。

これまでに行ってきた研究は3つあり,

- ・非自己共役なシュレーディンガー作用素のスペクトル理論ならびに擬スペクトル理論、
- ・強力な磁場を伴うシュレーディンガー方程式の初期値問題のユニタリ解作用素の存在と一意性、
- ・ディラック作用素の散乱理論、初期値問題における解の長時間挙動を解析する上で、 重要な役割を果たす、連続スペクトルの閾値でのレゾナンスの存在・非存在。

についての研究を行ってきました。

産官学連携や地域貢献の実績と提案

出前授業などを通して、何か地域貢献できればと考えています。

所属部門	地域・文化
研究分野	スポーツ科学, 応用健康科学

東 章弘 教授 一般科目教室(自然科学系) aazuma@fukui-nct.ac.jp

専門分野

保健体育、バイオメカニクス、健康科学 キーワード

移動運動,健康運動指導,体育授業研究 所属学協会・研究会

日本体育学会、日本バイオメカニクス学会、国際スポーツバイオメカニクス学会、日本人間工学会

研究テーマ

【移動運動のエネルギー論的研究】

Normal Walking

Vigorous Walking

【健康運動指導技法の開発】

【論理的理解を導く体育授業】

経験則に従った練習に陥りがち 運動技能の学習において、学習 者自らが自己またはチームので を演算処理することにい、動率 能を分析す論理のとが究している。 サーのがトンパクロので は、型の種目を中心にでないる。 型の技能の改善に役立てている。

- ・公開講座「からだを動かしたくなる講座」講師
- ・公開講座「スポーツカイト(凧)作りと飛行演技」講師
- ・高専カフェ「健康運動のポイント」講師
- ·福井国体陸上競技風力計測主任
- ・外国人との地域スポーツ交流

所属部門	地域・文化
研究分野	日本文学

伊勢 光 准教授
一般科目教室(人文社会科学系)
国語学
i se@fukui-nct. ac. jp

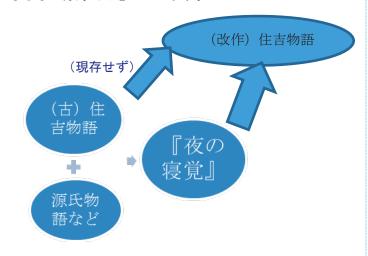
専門分野

日本古典文学(特に平安,鎌倉時代の物語)

キーワード

物語、話型、人物、男性/女性

所属学協会・研究会


中古文学会,物語研究会,平安朝文学研究会

研究テーマ

【平安後期物語の研究】

現在は平安後期の物語『夜の寝覚』について、研究を進めています。たとえば継子譚という枠組みを考えれば、『住吉物語』などとのつながりが考えられるわけですが、どのように『住吉物語』などの先行物語と向き合い、またその中からどのように新たな物語を作り出そうとしているのか、その仕組みを探りたいと思っています。

特に『住吉物語』の場合、現在は改作本しか残っていませんが、改作本に逆に『夜の寝覚』が影響を与えた可能性もあります。慎重、かつ早急に研究を進めていかなければならない分野だと思っています。

【人物論、特に帝についての考察】

物語から何かを考えようとする際に、心がけているのは人物に着目して読むということです。物語の登場人物とは、歴史上実在した人々では決してなく、紙の上だけにしか存在しない架空の「何か」ですが、それは作家が自らの観察眼をもってして造型した、比喩としての「私たち人間」だと考えます。であれば、その登場人物たちの生き方、息遣い、活き活きとした躍動感に目を向けることで、現代に生きる私たちが何か得ることができるのではないかと思うのです。

それら人物の中でも特に「帝」の問題は、 避けては通れないものだと考えています。歴 史学的なアプローチは当然重要ですが、それ に加えて、当時(平安、鎌倉)の人々がどの ように帝をとらえ、イメージしていたのか。 また、帝はその物語世界をどのように生きて いるのか。そのことを解き明かすことで現代 にもつながる、重要な示唆が与えられるよう に思われます。

- ・平成24, 25, 26年度, 大田区立図書館にて講演(『源氏物語』を読む)をしました。
- ・『源氏物語』を中心とする古典文学(物語文学)の講義、出前授業等についての準備があります。

所属部門	地域・文化
研究分野	日本語教育,日本語学

市村 葉子 准教授 一般科目教室(人文社会科学系) ichimura@ fukui-nct. ac. jp

専門分野

日本語教育, 日本語学

キーワード

日本語教育, やさしい日本語, 談話文法, 会話, イントネーション, 文末表現, 関連性理論

所属学協会・研究会

日本語用論学会, 日本文法学会, 日本語·日本語教育研究会

研究テーマ

【日本語指導法の研究】

外国人にわかりやすく、生活に役立つ日本語を教えるための研究をしています。外国人労働者受け入れ拡大に伴い、彼らへの日本語教育支援は喫緊の課題です。これまで越前市国際交流協会の日本語アドバイザーとして、定住外国人の日本語支援をされているサポーターの方に日本語教育の方法を指導してきました。

今後も地域と協力し、地域住民と 年少者を含めた定住外国人にとって 住みやすいまちづくりに貢献できる よう、取り組んでいきます。

【やさしい日本語を用いた文 書作成】

「易しい」言葉で「優しく」 伝えるために必要な日本語 とは何か、また、やさしい日 本語で何ができるかについ て興味があります。

外国人の国籍が多様化ししいる今、ますます「やさ高す」へのニーズは高までい日本語」へのニーズは高まできれます。これますらせを利力に地域のお知らせを表えらせた。 動に携わってきました。 動に携わってきましたの防作がある。 ででは、ガイドラインの作成を行いたいと思っています。

【日本語文末表現の研究】

「明日忙し<u>んだよね</u>」のような、 日本語の文末表現と発話意図との 関係を研究しています。日本語母語 話者が使用する文末表現を会話デ ータから取り出し、使用頻度の高い ものについてその発話意図を考察、 記述しました。特に「よね」などの 終助詞に興味があります。

文字情報だけではなく,使用場面と使用されるイントネーションなどから発話意図を読み取り,記述することで,日本語母語話者の伝達方略を明らかにしたいと思っています。

- ・平成25年,越前市国際交流協会主催の「やさしい日本語ワークショップ」を担当しました。
- ・平成30年、福井大学公開講座「日本語の教え方 スキルアップ専門講座」を担当しました。
- ・これまでに日本語サポーターの養成講座を担当しています(不定期)。

所属部門	地域・文化
研究分野	教科教育学, 代数学

井之上和代准教授一般科目教室(自然科学系)数学研究室k-inoue@fukui-nct.ac.jp

専門分野

数学, 数学教育

キーワード

教材開発, グラフアート, 可換環論, モーデルヴェイユ 格子理論

研究テーマ

【テクノロジーを活用した数学教育】

グラフ電卓や PC のソフトウェアを活用した、数学の教材の開発をし、授業で活用しています。

- * 関数グラフアート グラフ電卓のグラフ描画機能を活用して、関数のグラフで絵を描き、関数の性質を理解する教材です。この活動の効果についての検証をしています。
- * 実験教材の開発 数学と物理や工学の分野との 橋渡しとなるような実験教材を考案し、授業で 実践しています。
- * 課題プリントの作成、授業用プリントの作成 電子黒板での授業に対応できるような、教材の 開発をしています。

#の開発 -活用し - 3japan-2012-1 マ 1.400

Time (t) ↔

【その他】

可換環論について勉強をしています。

主要設備・得意とする技術

グラフ電卓とそれに接続してデータを収集できる距離センサー、加速度センサーなどを数学科で所有しています。1クラス(40人)分の機材があり、機材の貸し出しや、機材を使用するための初心者講座や、出前授業などの講師としての派遣に応じます。

0.400

産官学連携や地域貢献の実績と提案

公開講座, 出前授業

これまでに小・中学生を対象として、多面体やグラフ電卓を活用した実験についての講座を行っています。数学・算数の講座についての相談にも応じます。

所属部門	地域・文化
研究分野	土木環境システム, 環境モ デリング・保全修復技術

奥村 充司 准教授 環境都市工学科 環境・衛生工学研究室 okumura@fukui-nct. ac. jp

専門分野

上下水道工学,水環境学,地盤環境工学

キーワード

上水道,下水道,水質調査,地下水汚染,生物指標 所属学協会・研究会

土木学会, 日本水環境学会, 日本材料学会, 廃棄物学会, 応用生態工学会, NPO 福井地域地盤防災研究所

研究テーマ

【水環境・水辺のイベントによる地域活性化に関する研究】

国県市町、高専、高校、NPOが ー体となったイベントを日野川緑 地公園で開催しています。日野川 流域のみならず広く県民が約4千 人参加しています。「川で学ぶ」を テーマに本校学生による環境学習 のコーナを設置して実践し、アン ケートでその効果を検証します。

【汚濁河川のユスリカ発生抑制 対策】

無機物質により汚染した河川 におけるユスリカ発生対策を 提案しました。水質調査を実施 し、ユスリカ発生のメカニズム を解明し、さらにユスリカの発 生抑制事業の最適頻度を生態 学モデルによる解析で検討し ました。

【ビオトープ、名水、湧水の整備・ 維持管理に関する研究】

2014 年全国メダカシンポジウムの 2 度目の開催に向けて、越前市内ビオトープの調査、パンフレットの作成を行いました。また、福井県のおいしい水認定箇所の継続的な維持管理を目指し、現状を調査し、保全活動の指針を作成しました。

主要設備・得意とする技術

環境都市工学科棟3階の衛生工学実験室では、水質分析に関する備品、器具を保有しており、河川水質や、地下水・湧水の水質分析を行っています。また、河川の水生生物調査を行い、河川環境の評価の基礎資料としています。保有装置・器具は以下のとおりです。

- ・全有機炭素計(TOC): 有機性排水の有機物分析・土壌中の有機物含有量
- ・原子吸光分光光度計:重金属による土壌・地下水汚染の調査
- •生物調査器具一式:河川底生無脊椎動物調査, 魚類調査

- ・環境教育プロジェクトWET(エデュケーターの資格)のアクティビティを用いて出前授業を行っています。
- ・御清水川のユスリカ対策を地元のNPO団体、住民、企業、本校学生との協働で実施しています。
- ・武生メダカ連絡会の会長として、下水道事業推進や農地の生態系再生活動を行っています。
- ・「そうだ!川へ行こう」川のイベントを通じて、河川管理者や漁協、建設業者などと河川を中心とした 環境教育や地域活性化の実践活動を行っています。

所属部門	地域・文化
研究分野	日本語学

門屋 飛央 助教 一般科目教室(人文社会科学系) kadoya@fukui-nct.ac.jp

専門分野

日本語学,方言

キーワード

日本語史, 九州方言, 福井方言

所属学協会・研究会

日本語学会,西日本国語国文学会,九州方言研究会,

筑紫日本語研究会, 九州大学国語国文学会,

福井大学言語文化学会

研究テーマ

【一地点の方言の包括的記述】

九州地方の西に位置する,五島列島の宇久島 の方言を包括的に記述しています。上図の黒部 分が宇久島(宇久町)です。

方言というと、どうしても共通語と異なる部分に注目が集まります。同じ日本語でもこのように異なるのは、そこに方言独自の言語体系があるからです。

その方言独自の言語体系を明らかにするため

に、共通語と異なる部分だけを 記述するので方 なく、その方言を包括的に記述 することを行っています。

宇久平港

【重層的な日本語史研究】

日本語の中央語は、江戸時代前期までは京都の言葉、江戸時代後期からは江戸・東京の言葉です。これまで日本語史の研究では、この中央語の歴史を中心に扱ってきました。

しかし、日本語とは日本列島すべてで話されている言葉 であるはずです。方言を記述することで、中央語だけの通 時的な視点だけでなく、通方言的な視点を持つことができ ます。その視点から、日本語史を重層的に考察することを 行っています。

また、日本語史研究と世界の言語研究は、互いに応用・ 検証しあう関係にあります。中央語には見られない言語現 象が、方言にはみられるので、その記述は、世界の言語と の対照にも役立つものになります。

日本語史研究の発展

- ① 中央語とは異なる方言独自の言語体系を記述する。
- ② 中央語だけでは見えない、日本語の多様性を探る。

応用·検証

世界の言語

- ① 各地の言語現象の分析
- ② 言語理論

- ・ 古川初義氏の『長崎県小値賀町 藪路木島方言集~無人になった島のことばの記録~』の出版に際し、 前田桂子氏(長崎大学)とともに、監修・編集をしました。
- ・ 2018年7月に福井高専地域連携アカデミア総会で特別講演講師、10月に高専カフェで講師を務めました。
- ・ 2018年度より、藤島高校SSH学校設定科目「研究ⅡB」の研究アドバイザーを務めています。

所属部門	地域・文化
研究分野	刑事法学

川畑 弥生 助教 一般科目教室(人文社会科学系) 法学研究室 kawabata@fukui-nct.ac.jp

専門分野

刑事政策, 少年司法手続

キーワード

修復的司法, 少年司法手続, 社会内処遇

所属学協会・研究会

日本公共政策学会, 更生保護学会

研究テーマ

【犯罪被害者と加害者による対話の効果検証】

現行の刑事司法手続や少年司法手続の目的は.

①真実の解明と②罪を犯した者に対して罰を科 すことが、その主たる目的です。

そのため、犯罪被害者は事件の関係者であるにも関わらず、当事者として刑事司法手続に関わることができず、「国家」と「加害者」という構図で手続が進められてしまいます。

「修復的司法」は、そこに犯罪被害者が参加 し、被害者の救済や癒しに効果のある取り組み として、主にヨーロッパ諸国、アメリカ、オセ アニア諸国等で実施されています。

日本においても、警察主導のパイロット事業 やNPOでの取り組みは行われておりますが、 効果の検証は十分に行われておりません。

日本で実施した場合の効果について検証するとともに、教育現場で生じる問題の1つである「いじめ」や「非行」といった諸問題への応用と実践が研究課題です。

図 1 対話による解決のアプローチフロー図

地域貢献の実績と提案

2014年から、NPO法人「対話の会」で活動しております。

所属部門	地域・文化

研究分野

日本中

木村 美幸 助教 一般科目教室(人文社会科学系) m-kimura@fukui-nct.ac.jp

専門分野

近現代史,地域史,軍事史,社会史

キーワード

海軍, 志願兵, 地域, 兵事資料

所属学協会・研究会

史学会,日本歴史学会,大阪歴史学会,近現代史研究会, 日本史研究会

研究テーマ

【海軍志願兵についての研究】

日露戦争後~アジア・太平洋戦争期に海軍志願兵をどのように集めていたかについて研究しています。 戦前の軍隊の制度としては、20歳以上が入営する徴兵制度が有名ですが、「予科練」に代表されるように、 海軍は常に一定の割合を20歳未満の全国の青少年から志願で集めていました。青少年が海軍を志願するためには、周りでそれを支える仕組みが必要であったはずです。こうした点を明らかにするために、海軍が どのような拠点を地域に設けていたのかを研究しています。

こうした拠点について検討するにあたり、海軍協会や地方海軍人事部・在郷軍人会などの組織の動向について、各地の役場に残る行政文書や防衛省防衛研究所の資料・各種ポスター類などを使って研究しています。(写真は「啓発新聞の作り方」2 [日本宣伝研究所、1943 年]より、海軍志願兵募集のために児童生徒が作成するポスター例)。

【軍隊と地域についての研究】

前述の海軍の研究を軸にして、今後は陸軍も含めた軍隊と地域の関係についての研究を進めていきたいと思います。特に鯖江は歩兵第36連隊が置かれた「軍都」でもあるので、今後は鯖江市域の軍隊と地域の関係についても研究していきたいと思います。

- ・愛知県史、西尾市史、豊田市史などの自治体史編さんに携わってきました。今後は、福井県域も含めて地域との関わりについて研究していきたいと思います。
- ・名古屋大学大学文書資料室への勤務経験があり、歴史資料整理や目録作成についてのアドバイスもできるのではないかと思います。

所属部門	地域・文化
研究分野	哲学・倫理学

佐藤 勇一 准教授 一般科目教室(人文社会科学系) 哲学研究室 y-sato@fukui-nct.ac.jp

専門分野

フランス哲学. 現象学

キーワード

メルロ=ポンティ、間文化性、視覚論、身体論 所属学協会・研究会

日本現象学会, 日仏哲学会, 関西哲学会, 関西倫理学会, メルロ=ポンティ・サークル、日本ミシェル・アンリ哲 学会

研究テーマ

【研究テーマ1】

メルロ=ポンティの哲学を中心 に、哲学・現代思想について研究し 化の間で生起する間文化的な諸現 ています。これまでに、メルロ=ポー象を現象学的に解明するプロジェー ンティ関連の翻訳に携わるととも に. メルロ=ポンティが哲学以外の 領域(心理学、キリスト教、芸術、 人類学など)との対話を通じて、古 典的な哲学(とくに17世紀)が問題 にした「存在」「自然」「人間」の関 係を, 古典的な仕方とは別の仕方で 捉え直していることを明らかにし てきました。今後は晩年の未公刊草 稿も視野に入れることによって、メ ルロ=ポンティ研究の深化を目指 すとともに、後期思想の応用可能性 について探り、メルロ=ポンティ研 究の拡張も目指します。

【研究テーマ2】

間文化現象学という、文化と文 クトに10年参加してきました。ま た. 2018年よりp4 c (子どもの哲 学)という近年世界各地の国や地 域で実践されている哲学対話に取 り組み、国内やハワイの教育実践 から学び始めました。今後は、間 文化現象学の「芸術」に関する共 同研究に関わるとともに、p4cの ような教育実践研究、市民的知性 の教育や市民との協働とも関わる ことによって、哲学研究(とくに メルロ=ポンティ研究)を中心に 他の分野と関わる新たな研究領域 の創出を目指します。

【研究テーマ3】

これまでにも、メルロ=ポン ティの芸術論を取り上げたり. ケプラーやデカルトの光学に関 するメルロ=ポンティの視覚論 を. 間文化現象学的に取り上げ たりするなど、「視覚」を主要な 研究テーマのひとつとしてきま した。ジェイの視覚に関する著 作『うつむく眼』の翻訳も出し ました。今後は、フランス哲学 における視覚に関する考察を現 象学のみに限定せずに取り上げ たりすることによって、「視覚」 や「技術」に対して思想史的に アプローチする研究に取り組ん でいきたいと考えています。

産官学連携や地域貢献の実績と提案

2014年、15年に「公開講座 ラボール学園京都労働学校(公益社団法人京都勤労者学園)セミナー 『哲 学の名著を読む』」に講師として参加しました。また、2016年以降、「公開講座 中学生のための社会講 座——高専の入試問題で学ぼう——」に講師として参加しました。JOINTフォーラム2016では、武生商工 会議所にて「ポスター発表 未公刊草稿の観点から行うメルロ=ポンティ哲学研究」を行い、2017年には 福井高専地域連携アカデミア総会に特別講演講師として参加しました。2019年には高専カフェ「メルロ= ポンティ思想紹介 -哲学と絵画・対話-」, 立命館大学にてワークショップ「対話の促し」に発表者として 参加しました。

所属部門	地域・文化/エネルギー
研究分野	原子・分子 量子エレクトロニクス

白﨑 恭子 技術職員 教育研究支援センター shirasaki@fukui-nct.ac.jp

専門分野

物理学

キーワード

ボソン、フェルミオン、混合系、

ボーズ・アインシュタイン凝縮、不安定性、転移温度

所属学協会・研究会

日本物理学会, 応用物理学会応用物理教育分科会,

日本物理教育学会, 日本工学教育協会

研究テーマ

【ボソン - フェルミオン混合多体系のボーズ・アインシュタイン凝縮】

すべての物質はボソンとフェルミオンに分けることができます。ボソンは1つの状態を複数の粒子が占めることができ、フェルミオンは1つの状態を1粒子しか占めることができない(パウリの排他律による)という特徴があります。このため、温度がほぼゼロの低温のとき、ボソンとフェルミオンは異なったふるまいを示します。ボソンの場合にはエネルギーゼロの最低エネルギー状態へ全粒子が集まるボーズ・アインシュタイン凝縮(図1)が起こり、フェルミオンの場合には最低エネルギー状態から順番に粒子が埋まってゆき、フェルミ面をつくります(図2)。

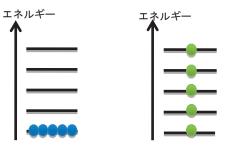


図1:ボソン

図2:フェルミオン

ここで、ボソンとフェルミオンを混合し、互いが相互作用をしている場合にはどのようなふるまいを示すのかを研究しています。具体的には、ボソン・フェルミオン間の相互作用を引力とし、その強さによりボーズ・アインシュタイン凝縮の転移温度はどのように変化するかを調べています。

また、ボソン - フェルミオン間の相互作用が引力のとき、低温では系が不安定になります、不安定になる温度の、ボソン - フェルミオン間の相互作用の強さによる変化についても調べています。

- ・教育研究支援センターで夏季・秋季に公開講座を実施しています。
- ・その他、子ども向けの科学教室等の活動にも参加しています。

研究分野自然科学一般
所属部門地域・文化

中谷 実伸 教授 一般科目教室(自然科学系) nakatani@fukui-nct.ac.jp

専門分野

数学,数学教育

キーワード

無限可積分系, 数学教材開発

所属学協会・研究会

日本数学会

研究テーマ

【テクノロジーを用いた数学教育】

グラフ電卓やパソコン、iPadなどのテクノロジーを活用した数学教育の研究ならびに教材開発を行っています。

【工学機器を用いた数学教材の開発と活用】

レーザーカッターや3Dプリンタ,3Dプロッタなどを使い、オリジナルの数学教材を作成し、授業などで実際に活用する研究を行っています。

産官学連携や地域貢献の実績と提案

「多面体を作ろう」やグラフ電卓を用いた「あるく」をテーマとする公開講座や出前授業を行っています。

所属部門	地域・文化
研究分野	自然科学一般

長水 壽寛 教授 一般科目教室(自然科学系) 数学研究室 nagamizu@fukui-nct.ac.jp

専門分野

数学, 数学教育

キーワード

位相数学(General Topology), 教材開発, メタ認知 所属学協会・研究会

日本数学会, 日本数学教育学会, 数学教育学会, 数学協会

研究テーマ

【テクノロジーを用いた数学教育の研究】

- ・グラフ電卓などのテクノロジーを用いて、学生の探究活動を促す教材開発および、授業実践を 試みています。
- ・関数のグラフで作成した「関数グラフアート」の全国コンテストも、福井高専が事務局となって 行っています。

【メタ認知の研究】

・数学教育にテクノロジーを導入することで、「メタ認知」がどのように育成されるか? また、その仕組みについても研究しています。

産官学連携や地域貢献の実績と提案

【公開講座・出前授業】

・「多面体作り」や「グラフ電卓を用いて関数を体験する」などをテーマにした公開講座・出前 授業を行っています。

【サッカー教室】

・キッズリーダーの資格を持っています。福井高専のサッカー部員のほとんどがキッズリーダー の資格を持っています。園児を対象としたサッカーフェスティバルにもお手伝いで参加して います。幼稚園などでご希望があれば、サッカー教室を行います。

所属部門	地域・文化
研究分野	英語一般

原口 治 教授 一般科目教室(人文社会科学系) 英語教育支援室 osamuh@fukui-nct. ac. jp

専門分野

イギリス文学(20世紀小説), 20世紀イギリス文化, 技術英語教育

キーワード

英語,イギリス文学,イギリス文化,技術英語 所属学協会・研究会

日本英文学会,日本ロレンス協会,テクスト研究学会,日本英文学会中部支部, D.H.ロレンス研究会,映画英語アカデミー学会

研究テーマ

【「イングランドらしさ」のイデオロギー研究】

「イングランドらしさ」のイデオロギーについて、エドウォード朝文学を中心に研究しています。これまで主に、D.H.ロレンスとE. M. フォースターの「イングランド人としての意識(= "Englishness")」を実生活と作品の双方から研究してきました。ケンブリッジ大学での各種調査(平成15年度文科省在外研究員・若手12ヶ月)等の研究成果を学会発表や論文等で公表しております。平成25年度は共著書の出版に向けての各種研究に主従事する予定です。「主要研究成果」

翻訳. 吉村宏一他編訳. 『D.H.ロレンス書簡集VII』. 東京: 松伯社, 2013.

【技術英語教育モデル構築】

国際的技術者に必要とされる英語教育カリキュラムの構築と実施に関する研究を、本校専攻科英語教育を中心に行なってます。これと並行して、企業で必要とされる一般的な技術英語教育全般についても、科学研究費受入の下、各種研究や実地調査を含めて、今後さらに研究展開する計画です。

「主要研究成果」

著書. 原口治他編著. 『自然科学を読む:過去・現在・未来—工業 英検対応—』. 東京:朝日出版, 2012.

【英語文学及び文化研究を通して の地域貢献のありかた】

福井県や鯖江市を中心に各種の地域 貢献を展開しております。

「主要特記事項」

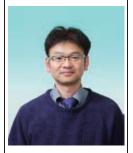
県レヴェルでは、平成25年度福井県大学連携リーグ連携研究推進事業補助金受入の下で、今後研究展開する計画です。鯖江市においては、鯖江市高年大学で、英語に関する新特別講座開講を中心に、地域貢献のありかたについて研究展開する計画です。以上の実践的な地域貢献を多角的に考察し、今後、論文や口頭発表の形で、研究成果を公表する予定です。その他、左記の研究テーマ【技術英語教育モデル構築】もご参照ください。

主要設備・得意とする技術

1. 「技術英語教育全般」

本校専攻科英語教育を中心に、国際的技術者に必要とされる英語教育カリキュラムの構築と実施に関する研究を行なっています。また、企業で必要とされる一般的な技術英語教育全般について研究しております。

2. 「英語文学及び文化研究を通しての地域貢献のありかた」


福井県大学連携リーグ連携講座や鯖江市高年大学特別講座等を中心に各種の地域貢献を展開しております。

産官学連携や地域貢献の実績と提案

「主要事項のみ記載」

平成28年度科学研究費受入 基盤研究(C)(一般)3か年 研究代表者 平成25年度福井県大学連携リーグ連携研究推進事業補助金受入 研究代表者 平成24年度福井県大学連携リーグ連携研究推進事業補助金受入 研究代表者

所属部門	地域・文化
研究分野	物性 II

挽野 真一 講師 一般科目教室(自然科学系) 応用物理学 hikino@fukui-nct.ac.jp

専門分野

物性理論

キーワード

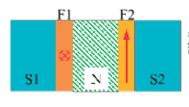
磁性, 超伝導, 近接効果, ジョセフソン効果, スピン 依存伝導現象

所属学協会・研究会

日本物理学会

研究テーマ

【 スピン依存伝導現象の理論的研究 】 超伝導/強磁性多重接合における近接効果の理論


超伝導/強磁性(S/F)接合では、近接効果によってSがかっ波超伝導体にも関わらず、Fに2つの電子のスピンの向きがそろったスピン三重項クーパー対が誘起されます(図1)。ここで、近接効果とは、超伝導体と非超伝導体の接合を作ると、超伝導体のクーパー対の波動関数が非超伝導体へ染み出す効果です。SF接合で現れるスピン三重項クーパー対のスピンをどのように観測すればよいのか、に関する研究が注目されつつあります。

研究成果の一例として、図2の左側に示した、超伝導体、強磁性体そして常磁性体の多重接合で、近接効果によって常伝導体中に誘起されるスピン三重項クーパー対のスピンを調べました。その結果、スピン三重項クーパー対のスピンに起因した磁化が、常伝導体に誘起されることを明らかにしました(図2の右側)。この磁化の特徴は、超伝導体間の位相差(例)によって制御することができます。 ●を変えることによって、磁化の大きさが変わるので、この磁化の変化を実験的に観測できれば、スピン三重項クーパー対の存在を直接確認することができます。今後は、応用への可能性も視野に入れて研究を行う予定です。

スピン三重項クーパー対が誘起

図.1 超伝導/強磁性接合において、近接効果によって出現するスピン三重項クーパー対の概念図

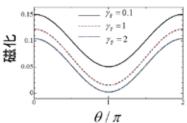


図.2 超伝導体(S),強磁性体(F) そして常磁性体(N) から構成される多重接合(左の図)で、スピン三重項クーパー対のスピンによって N に誘起される磁化の S 間の位相差の依存性(右の図)

産官学連携や地域貢献の実績と提案

【公開講座・出前授業】

• 理化学研究所一般公開説明員

内容:物性物理学と工学のつながりを一般の方々に説明していました。

・小・中・高の学生に対して物性物理学(磁性,超伝導,近接効果)の出前授業ができます。

所属部門	地域・文化
研究分野	外国語教育

藤田 卓郎 准教授
一般科目教室(人文社会科学系)
外国語教育研究(TEFL,
TESOL)

t-fuiita@fukui-nct.ac.jp

専門分野

外国語教育

キーワード

コミュニケーション, タスクを用いた言語指導, アクション・リサーチ, 実践研究法

所属学協会・研究会

中部地区英語教育学会、全国英語教育学会、外国語教育メディア学会

研究テーマ

【英語コミュニケーション能力の育成】

英語によるコミュニケーション能力の育成や、コミュニケーションへの動機づけを促進する指導法を研究しています。特に、タスクと呼ばれる活動を用いた言語指導(Task-Based Language Teaching)について研究しています。コミュニケーションを活性化するタスクの作成方法や指導方法に興味があります。これまでには、スピーキングタスクを行う前の事前準備時間(pre-task planning time)やタスクの繰り返し(task repetition)が学習者の発話の流暢さ、複雑さ、正確さに及ぼす影響について研究報告を行っています。

【アクション・リサーチによる英語授業研究法】

英語教師として、効果的な授業研究方法について研究しています。特に、アクション・リサーチの手法を用いた授業研究方法に興味があります。教室内での教育実践から理論を生成する方法や、理論と実践を融合させるための方法を研究しています。これまでには、意見・考えを問う授業やタスクを用いた言語指導について、アクション・リサーチの枠組みを用いた実践報告を行っています。

産官学連携や地域貢献の実績と提案

・福井県英語研究会放送テスト部員(2011年~2013年)

研究分野 スポーツ科学		松井 一洋 助教
	研究分野	スポーツ科学
所屋部門 地域・文化	所属部門	地域・文化

保健体育、バイオメカニクス

キーワード

足関節ブレース, 動作解析

所属学協会・研究会

日本体育学会、日本バイオメカニクス学会

保健体育学 matsui@fukui-nct.ac.jp

一般科目教室(自然科学系)

研究テーマ

【足関節ブレースの効果と動作への影響】

足関節捻挫の予防,再発防止を目的として使用される足関節ブレースは,自分で着脱することができ,繰り返し使用することが可能です。そのブレースが動作に対してどれだけの抵抗力(モーメント)を発揮しているのか,動作とブレース装着によって受ける力が膝関節などにどのような変化を与えるのかについて研究しています。

産官学連携や地域貢献の実績と提案

総合型地域スポーツクラブで小学生対象のバスケットボール教室に参加していました。 バスケットボール以外のスポーツイベントにも参加しています。

所属部門	地域・文化	 専門分野
研究分野	人文科学一般	英語教育、言語コミュニケーション
		キーワード
	宮本 友紀 准教授	英語教育、コミュニケーション、言語
25	一般科目教室(人文社会科学系)	所属学協会・研究会
	英語学	全国英語教育学会
	miyamoto@fukui-nct.ac.jp	中部地区英語教育学会
A Y A		全国高等専門学校英語教育学会

研究テーマ

【研究テーマ1】

多様なコミュニケーションのコンテクストにおける言語の使用の特徴やニーズの研究をしています。

【研究テーマ2】

研究テーマ1の応用としての外国語教育における言語指導の研究をしています。

産官学連携や地域貢献の実績と提案

【公開講座・出前授業】

工業英検やTOEICなど各種資格試験対策に対応可能です。

【ヨガ・瞑想教室】

ハタヨガのTeacher Trainingを修了しています。英語で初心者向けのヨガや瞑想、呼吸法の指導可能です。

所属部門	地域・文化
研究分野	英語全般

森 貞 教授 一般科目教室(人文社会科学系) 英語学 mori@fukui-nct. ac. jp

専門分野

英語学、日本語学、認知言語学、コーパス言語学 キーワード

文法、語法、認知モード

所属学協会・研究会

日本英語学会,日本言語学会,日本英語表現学会,日本認知言語学会,日本語用論学会,関西言語学会,大阪大学英文学会,金沢大学英文学会

研究テーマ

【日英語の認知モードの違いに着目 した英語教育教授法の研究】

認知言語学的観点を生かした辞書・ 教材開発((例:ベネッセ「E-Gate English-Japanese Dictionary」,ア ルク「文法マラソン」等)は近年注 目を集めているところであるが,本 研究では,特に,日英語間の「認知・Dモード」の違い〔Iモード認知・Dモード認知・Dモード認知・Dモード認知・Dモード認知・B表に関する基礎的研究を行い教育 授法に関する基礎的研究を行い教育 規場で具現化するための英語教育 材を開発することを研究目的としています。

【コーパス検索とアンケート を併用した日英語における 非文法的表現の出現に関す る研究】

非文法的表現及び研究者間で容認性判断に揺れが見られる表現の出現に関して、大規模データベース検索とアンケートを併用してその実態を明らかにし、認知語用論的観点・語用論的観点から、出現メカニズムを解明します。

【日英語の談話における主節表現 の機能と創発メカニズムの解明】

NR(NEG-Raising)述語及び ENR (Extended NEG-Raising) 述語を含む主節表現およびその日本語相当表現が、談話において、どのような機能を果たしているかを大規模データベース(文字データ・音声データ)の分析を通して明らかにするとともに、その創発メカニズムを解明します。

- ・2012年度福井県大学連携リーグ講座(テーマ:イギリス文学・文化を味わう)講師
- ・福井県内の旧所・名跡の英文パンフレットの作成支援
- ・福井県内の小・中学校の英語クラブ運営に関わる助言
- ・日英語の認知モードの違いに着目した英語教授法に関する講演会

所属部門	地域・文化
研究分野	数学基礎,応用数学

柳原 祐治 准教授 一般科目教室(自然科学系) 数学 y-yanagi@fukui-nct.ac.jp

専門分野

確率論,無限粒子系

キーワード

Percolation.

Contact process

所属学協会・研究会

日本数学会

研究テーマ

【モンテカルロ法】

確率論と統計力学を基本として.

「無限粒子が相互作用するなかで、相全体の様子がどのようにふるまうか」 ということについて、percolation model や contact process などの、様々なモデルにおいて研究 を行っています。

基本的には、数学の理論の枠組みのなかでの結果を求めていきますが、ときには、コンピューターで乱数を発生させ、シミュレーションを行って、「とにかく何が起こっているのか」ということを調べ、理由を探るという研究手法をとることもあります。(このような手法を「モンテカルロ法」といいます。)ですので、

金属内部, 流体, 交通流

等の対象について、モンテカルロ法で調べるといった依頼に応じることができます。

産官学連携や地域貢献の実績と提案

【公開講座・出前授業】

・「多面体作り」や「グラフ電卓を用いて関数を体験する」などをテーマにした公開講座・出前 授業を行っています。

研究分野	数学解析
所属部門	地域・文化

山田 哲也 准教授 一般科目教室(自然科学系) 数学 yamada@fukui-nct.ac.jp

専門分野

数学一般 (特に偏微分方程式論)

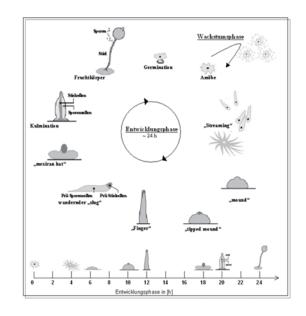
キーワード

移流拡散方程式

所属学協会・研究会

日本数学会

研究テーマ


【移流拡散方程式の解の定性理論】

関数解析や調和解析を用いて移流拡散方程式(例えば走化性粘菌モデルや半導体シュミレーションモデルなど)における解の定性的性質を調べています。最近は

- ・時間無限大での解の振る舞い(漸近形や漸近率)
- 定常解の安定性

に関する研究を行っています。

ð₂u = Δu - ▽・(u▽v), **ð₂**v=Δv-v+u 移流拡散方程式とは

走化性による細胞性粘菌の形態形成 出典 http://ja.wikipedia.org/wiki/細胞性粘菌

産官学連携や地域貢献の実績と提案

【公開講座·出前授業】

「多面体作り」を通して多面体の性質を学んでもらう公開講座や出前講座を行っています。

所属部門	環境·生態
研究分野	生化学,分析化学

上島 晃智 教授 物質工学科 uejima@fukui-nct.ac.jp

専門分野

生化学、微生物学、分析化学 キーワード

環境浄化, 微生物, 機能性和紙

所属学協会・研究会

日本化学会, 電気化学会

研究テーマ

【 微生物による河川浄化 】 自然固着菌種の活性化法

工場や住宅から排出される排水は、時として河川の自然浄化機能を超え、ヘドロとして低流速領域に溜まってゆく。特に治水事業としてコンクリートによる三面張り工法が採用された場合には、微生物繁殖機能が著しく阻害され、この傾向が顕著となる。そこで、ヘドロの溜まる領域の微生物を活性化する方法で、ヘドロの分解機能を促進し、効率的に堆積物を除去する方法探る。

【 和紙製造のプロセス改善 】 和紙補助原料の特性解析

和紙は植物の靱皮を砕き水に分散させることで 抄紙を行うが、このときに補助原料として植物由 来の分散剤を配合する。この分散剤の科学的特性 を解析することによって、より合理的で品質の高 い和紙製造への貢献を図る。また、分散剤の新し い保存方法を開発することで、廃棄物の低減に寄 与する。

主要設備・得意とする技術

- ・微生物の解析技術を用いて、有用細菌群のスクリーニングを行う。
- ・ICPやクロマトグラフ、質量分析装置、原子吸光、蛍光X線などの有機・無機の分析技術で様々な物質変化を検出する。
- 引張試験機や耐折試験機などを通して和紙の物理的特性を解析する。

- ・ 和紙副原料保存剤の影響解析
- 福井県環境審議会特別委員
- 出前授業等

所属部門	環境・生態
研究分野	土木工学

小木曽 晴信 技術職員 教育研究支援センター ogiso@fukui-nct.ac.jp

専門分野

土木工学

キーワード

測量, 地盤, 環境, 植生, 植樹

所属学協会・研究会

鯖江市環境まちづくり委員会,越の郷地球環境会議,エコプラザさばえ,IGES国際生態学センター研究会員,応用生態工学会,自然環境復元学会

研究テーマ

【建設発生土の有効利用】

・福井県内の河川から採取した堆積土砂(浚渫土砂)の土質試験およびコーン指数による比較 を行い、堆積土砂の性質に応じた安定材の選定などを行っています。

【福井県内の潜在自然植生の概念に基づく広葉樹幼苗植栽地の調査】

- ・福井県内の潜在自然植生の概念に基づく広葉樹植栽地(環境保全林)について、植生発達状 況を調査しています。
- ・ 植樹地の土壌特性(物理・化学性)が植生に及ぼす影響について研究を行っています.

主要設備・得意とする技術

【主要設備】

一軸圧縮試験機,一面せん断試験機,pH・EC 測定器,締固め試験機,CBR 試験機,トータルステーション,GNSS (GPS) 受信機・解析ソフト

【得意とする技術】

環境都市工学科学生への実験実習指導(測量、土質試験)

- ・鯖江市環境まちづくり委員として、地域の環境活動について企画・運営を行っています.
- ・越の里地球環境会議のメンバーとして、地元産苗木を用いた植樹活動を行っています。

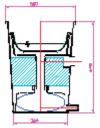
所属部門	環境・生態
研究分野	土木環境システム,環境モ デリング・保全修復技術

奥村 充司 准教授 環境都市工学科 環境・衛生工学研究室 okumura@fukui-nct.ac.jp

専門分野

上下水道工学, 水環境学, 地盤環境工学 キーワード

上水道,下水道,水質調查,地下水汚染,生物指標 所属学協会・研究会


土木学会, 日本水環境学会, 日本材料学会, 廃棄物学会, 応用生態工学会。 NPO 福井地域地盤防災研究所

研究テーマ

【排水中におけるSSおよび有機物 の処理に関する研究】

河川へのSS、BOD負荷を軽減 する目的で, 地場産業排水の浮遊 性物質(繊維くず等)を土木シート で濾過除去し、微生物を付着させ た不織布により有機物を好気的に 処理する技術を開発しています。

研究(河川自然再生技術として の小わざ)】

日野川に人と生き物を川に呼 び戻すことを目的に、河川の自 然の営力を利用して砂礫河原 を取り戻す研究およびコウノ トリの冬季の餌場としてのワ ンド整備を検討しています。

【日野川に砂礫河原を取り戻す|【水生生物による河川環境の調 査・評価】

河川無脊椎動物およびそれらの餌 となる流域森林から供給されるリ ター、河道内部生産である付着藻類 の現存量・生産量調査を行い、河川 水質および河川の自然度, 生態系の 持続性を評価しています。

主要設備・得意とする技術

環境都市工学科棟3階の衛生工学実験室では、水質分析に関する備品、器具を保有しており、河川水質や、 地下水・湧水の水質分析を行っています。また、河川の水生生物調査を行い、河川環境の評価の基礎資料と しています。保有装置・器具は以下のとおり。

- ・全有機炭素計(TOC):有機性排水の有機物分析・土壌中の有機物含有量
- 原子吸光分光光度計:重金属による土壌・地下水汚染の調査
- 生物調査器具一式:河川底生無脊椎動物調査. 魚類調査

- ・環境教育プロジェクトWET(エデュケーターの資格)のアクティビティを用いて出前授業を行っています。
- ・御清水川のユスリカ対策を地元のNPO団体, 住民, 企業, 本校学生との協働で実施しています。
- ・武生メダカ連絡会の会長として、下水道事業推進や農地の生態系再生活動を行っています。
- 「そうだ!川へ行こう」川のイベントを通じて、河川管理者や漁協、建設業者などと河川を中心とした。 環境教育や地域活性化の実践活動を行っています。

所属部門	環境・生態
研究分野	環境動態解析

片岡 裕一 技術職員 教育研究支援センター kataoka@fukui-nct.ac.jp

専門分野

作業環境測定

キーワード

環境測定,安全衛生

所属学協会・研究会

作業環境測定協会,大学等環境安全協議会

研究テーマ

【計量証明を必要としない環境計測(含む作業環境)】

- ●工程や作業の変更をおこなうと排出される排ガスや排水などに含まれる有害物質の濃度が変化する場合があります。有害物質の濃度が増加すると、環境汚染や地域住民や労働者の健康障害の原因となりえます。
- ●このように環境計測はCSRとしての環境負荷の低減や健康障害の防止のために重要です。

しかし、専用の分析機器を持たない事業所は、排水の水質測定や作業環境改善のための自社測定が不可能な状況です。

●現在,福井県和紙工業組合より委託(12事業所)を受けて、事業所排水が越前市指定の環境基準項目の基準値に適合し、適正に排出されているか確認するためサンプリングおよび測定を実施中です。

主要設備・得意とする技術

地域連携テクノセンターに設置された恒温恒湿室内の引張試験機, 折曲げ試験機を利用して薄い素材の強度 試験が可能です。

中央労働災害防止協会 有機溶剤業務従事者インストラクター,局所排気装置等定期自主検査インストラクター,新入者安全衛生教育トレーナー,酸素欠乏危険作業特別教育インストラクターです。

産官学連携や地域貢献の実績と提案

☆これまでに、次のような社会活動をしてきました。

(1)公開講座「親子理科教室」(2011年7月),

公開講座「親子科学教室」(2012年7月)

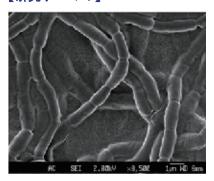
所属部門	環境・生態
研究分野	バイオテクノロジー
	· · · · · · · · · · · · · · · · · · ·

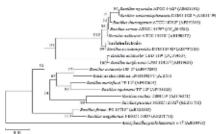
川村 敏之 講師 物質工学科 kawamura@fukui-nct.ac.jp

専門分野

生物機能、遺伝子工学

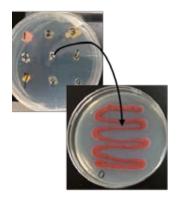
キーワード

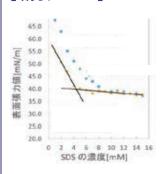

バイオテクノロジー、分子生物学


所属学協会・研究会

日本動物学会、高専学会など

研究テーマ


【研究テーマ1】


納豆菌である Bacillus 属細菌の単離・同定を行い、それぞれの特徴や生理機能などを応用することを目的としている。

【研究テーマ2】

単離したBacillus属細菌を 色々な条件で培養すると、化 合物を生産する。

【研究テーマ3】

上図は抽出した化合物の界面活性 剤との相互作用を分析している。 単離した化合物にどのような性質 があるか調べ、化合物を応用できな いかを検討する。

単離した化合物をモデル生物であるメダカやプラナリアへ投与して細胞への影響を見たり、カビやキノコの生育への関与について解析を行っている。

所属部門	環境·生態
研究分野	分析化学

後反 克典 准教授 物質工学科 分析化学研究室 gotan@fukui-nct.ac.jp

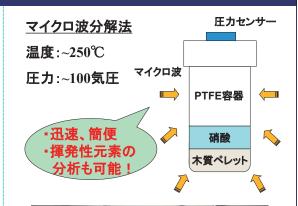
専門分野

無機分析化学

キーワード

微量元素分析,環境·材料分析,高感度分析

所属学協会・研究会


日本分析化学会, 日本地球化学会

研究テーマ

【マイクロ波分解法による木質パイオマス発電燃料中の迅速元素分析法の開発】

環境試料および材料中に含まれる微量元素の分析では、 試料の前処理法の検討や分析の妨げとなるマトリクス成分(主成分)の影響の軽減が重要となる。これらの要因を 取り除き、微量元素を精確に定量するための試料分解法や 目的元素の分離、精製法の開発を行っている。一例として、 マイクロ波を用いた木質ペレットの分析法の開発を示す。 マイクロ波分解装置を用いて高温・高圧条件にすること で、従来は困難であった試料分解を安全・迅速に達成できる。本方法による前処理と、誘導結合プラズマ質量分析装置を組み合わせることで極微量元素(ppt~ppm)の多元素 (約70元素)同時定量分析が可能となる。

他にも抽出法や、LC カラムおよび固相抽出、溶媒抽出 等による前処理を組み合わせた分析手法の開発を行い、ホウ素、ヒ素等、カドミウム、水銀の環境汚染の原因となる 物質の評価の研究を行っている。

主要設備・得意とする技術

・ 原子スペクトル法を用いた環境試料中の微量元素分析および材料中の不純物成分の分析, および前処理 (試料分解, 分離・濃縮技術等)を含む分析法の開発。

【主な使用機器】

二重収束型誘導結合プラズマ質量分析装置,誘導結合プラズマ発光分析装置,高分解能フレームレス原子吸光分析装置,フレーム原子吸光分析装置,紫外可視吸光光度計,全有機炭素分析計,マイクロ波分解装置,差動型示差熱天秤,高感度示差走査熱量計

産官学連携や地域貢献の実績と提案

過去に行った産官学連携研究テーマ

「石炭中微量元素の分析法開発、標準化、およびキャラクタライゼーション」

「小型自走式ロボットによる土壌化学成分濃度布モニタリングシステムの試作」

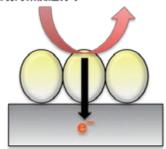
所属部門	環境・生態
研究分野	生物機能・バイオプロセス

坂元 知里 助教 物質工学科 sakamoto@fukui-nct.ac.jp

専門分野

生物化学, 電気化学

キーワード


電気化学、バイオデバイス、酵素固定化

研究テーマ

【生体機能を利用したバイオデバイスとシステムの創製】

バイオデバイスは、電極上に生体や酵素等の生体分子を固定化し、バイオ燃料もしくは測定対象分子に対 する生体の応答情報を電子情報として測定する素子です(Figure 1)。

糖などバイオ燃料 環境汚染関連分子

電極

【対象=バイオ燃料の場合】

化石エネルギーに代わる新エネルギー素子として, 高出力なバイオ燃料電池の開発を行います。

生体分子(酵素等) 【対象=環境汚染分子等の場合】

High throughputな環境評価ツールとして、**バイオセ** ンサデバイスおよびシステムの開発を行います。

Figure 1 バイオデバイスの概要

主要設備・得意とする技術

【得意とする技術】

- 電極材料への生体分子の固定化
- 生体分子・化学物質の電気化学測定

産官学連携や地域貢献の実績と提案

【産学連携の実績】

細胞接着領域を制御する装置の開発

所属部門	環境・生態
研究分野	複合化学,農芸化学
	高山 勝己 教授 物質工学科 応用微生物学研究室
A STATE OF THE STA	takayama@fukui-nct.

専門分野

分析化学,応用微生物学,生物機能,バイオプロセス キーワード

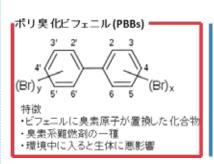
バイオレメディエーション, バイオセンサー, バイオリファイナリー

所属学協会・研究会

日本化学会,日本分析化学会,日本生物工学会,日本工学教育協会

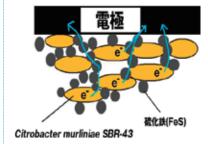
研究テーマ

【ニトロ化合物検出用バイオセン サーの構築】


細胞表層工学の技術を用いて、 酵母の細胞表層にニトロレダクタ 一ゼ酵素を発現させ、これを用い たニトロ化合物バイオセンサーの 構築を試みています。ニトロ化合 物は有害化学物質の一つです。

【有機臭素系難燃剤分解菌の探 索】

ac. jp


難燃剤には様々なタイプのものがありますが、有機臭素系化合物はその代表例の一つです。有機臭素系化合物は、その有害性から使用されなくなりつつありますが、難分解性であるために環境中に残留しており、これらの生物分解除去は重要課題の一つです。

【未利用バイオマスを利用する バイオ燃料電池の開発】

バイオ燃料電池は、触媒として 酵素もしくは微生物を用い、燃料 には糖類や有機酸を利用します。

本研究室では、微生物バイオ電池のアノード極に研究の焦点を絞り、直接電子移動型アノード電極の構築に取り組んでいます。

主要設備・得意とする技術

微生物を用いた環境浄化やバイオセンサーに関する研究を実施するために必要とされる基本的な研究設備を保有しています。各種微生物培養用インキュベーター、ファーメンター、PCR、位相差・明視野・微分干渉・蛍光顕微鏡、クリーンベンチ(2 台)、滅菌装置(オートクレーブ、乾熱)等。他に各種分析装置を保有しています(HPLC、UV-VIS、蛍光光度計、GC-FID、電気泳動装置、電気化学測定装置等)。今後、UPLC-MS、キャピラリー型DNAシークエンサーの導入を予定しています。

- ・未利用バイオマス資源の有効利用に関する研究(バイオ電池開発や有用物質への変換)
- ・電界印加による植物種子の発芽促進効果についての研究
- ・有機リン農薬検出用バイオセンサーの構築
- ・各種有害物質(有機リン,有機塩素,有害金属)の微生物による浄化または回収に関する研究

所属部門	環境・生態
研究分野	環境モデリング・保全修復 技術

廣部 まどか 技術職員 教育研究支援センター m-hirobe@fukui-nct.ac.jp 専門分野 生態学

キーワード

里地里山,生物調査,保全活動,WBGT

研究テーマ

【里地里山を生息域とする生物調査】

福井県は豊富な自然環境に囲まれています。その中でも自然と都市の中間にあり、集落とその周辺の森林と農地で構成された地域を指す里地里山を生息域とする生物の調査や保全活動に努めてきました。希少な生物の多くが里地里山に生息する種であり、人との関わりの中で維持されてきた里地里山の生態系保護は、人の手によってでしか再興出来ないと考えています。

- ・衛生工学実験におけるコドラートを用いた水生生物調査
- ・外来生物であるアメリカザリガニやブラックバス、ブルーギルなどの駆除
- ・県域絶滅種であるアベサンショウウオの生息域調査

【WBGT自動測定システム自作プロジェクト】

福井県では実測されていない黒球温度を本校で測定し、併せて湿球温度、 乾球温度を測定することで、本校における正確なWBGT(暑さ指数)を求め、 学生・教職員および地域住民の熱中症予防に寄与することを目的に現在 活動中です。

図1 定点観測型WBGT 自動測定システム

産官学連携や地域貢献の実績と提案

H29年度 公開講座 11月 「親子で作るオリジナル写真年賀状」

H28年度 公開講座 11月 「親子で作るオリジナル写真年賀状」

H27年度 公開講座 7月 「小中学生夏休み科学教室」

H27年度 公開講座 11月 「親子で作るオリジナル写真年賀状」

●福井高専におけるリアルタイムな熱中症関連情報について

https://s-portal.tsc.fukui-nct.ac.jp/tsc/index.php/tsctop/oshms/wbgt

所属部門	環境・生態
研究分野	応用生物化学,無機化学

舟洞 久人 技術職員 教育研究支援センター funabora@fukui-nct.ac.jp

専門分野

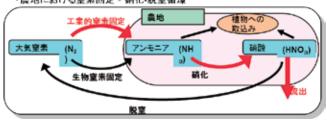
応用生物化学, 無機化学, 生物無機化学

キーワード

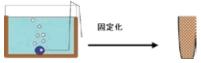
生物工学、バイオフィルム、バイオセンサー

研究テーマ

【平行複式無機化を行う微生物郡の固体単体への固定化】


●目的: 恒常的な電力を用いる操作を用いることなく、有機物から無機肥料

成分である硝酸態窒素を効率よく生成する方法の提供


●社会的意義:有機質資源の再資源化の大規模化に伴う電力コストの削減

窒素固定-脱膣循環の適正化による環境負荷の低減

・農地における窒素固定 - 硝化-脱窒循環

・多孔質担体への微生物固定による 無機肥料製造速度向上

平行複式無機化を行う 固定化による反応効 バイオフィルム 率化及び省電力化

主要設備・得意とする技術

凍結乾燥機,遠心分離機等の設備を管理しています。HPLCやDNAシークエンシング,ボルタメトリー等の化学的分析手法の経験を有しています。

産官学連携や地域貢献の実績と提案

公開講座「発泡スチロールスタンプ製作」、「ポンポン蒸気船製作」、「アニメーション製作」等の理科への 興味喚起を促す公開講座を実施してきました。また、「年賀状作成講座」等の地域貢献も行いました。今 後も新規テーマ「バナナからDNAを取り出そう」等の理科に関する公開講座や出前授業、その他地域貢献を行っていきたいと思います。

所属部門	エネルギー
研究分野	電力工学,電気機器

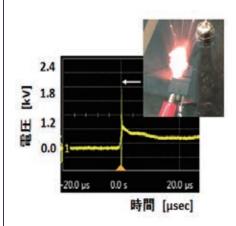
秋山 肇 教授 電気電子工学科 電力制御デバイス研究室 akiyama@fukui-nct. ac. jp

専門分野

半導体工学, 電気機器, 技術史

キーワード

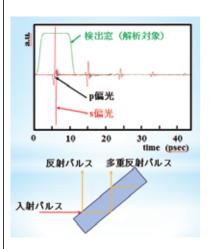
パワーエレクトロニクス, テラヘルツ分光技術, 加速器応用, 博物館学


所属学協会・研究会

米国電気電子学会(IEEE), 電気学会, 応用物理学会, 産業技術史学会

研究テーマ

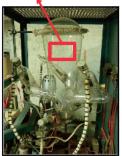
【研究テーマ1】


次世代パワーデバイスの材料物性, プロセス技術, デバイス動作解析及 び動作限界に関する研究に取り組ん でいます。

上図:炭化ケイ素・ショットキーバリアダイオード(SiC-SBD)への高電圧サージ印加による電圧波形と破壊現象の観察例

【研究テーマ2】

高エネルギービーム、テラヘルツ波(THz波)等を用いた各種半導体・セラミック材料の物性解析に取り組んでいます。



上図: ZnO 基板に照射した THz 波の反射パルス波形観察例

【研究テーマ3】

絶縁、整流、高電圧大電流通電 を支えてきた電気技術の変遷に 関する歴史の調査・研究に取り 組んでいます。

上図:鹿児島大学博物館所蔵に 係る直流電源内蔵の水銀整流器 に関する履歴調査から

主要設備・得意とする技術

・高電圧サージ試験器(最大印加ピーク電圧:15kV)を用いたデバイス・機器の耐久性試験

- ・国立研究機関・大学等の加速器施設と共同で材料改質や分析に関する調査研究を行った実績があります。
- ・地場産業の問題解決や新規分野への進出に関するご相談を承ります。

所属部門	エネルギー
研究分野	数理物理・物性基礎

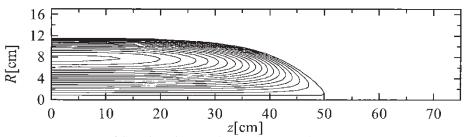
高久 有一 准教授 電子情報工学科 takaku@fukui-nct. ac. jp

専門分野

プラズマ科学, 数理物理, 計算科学

キーワード

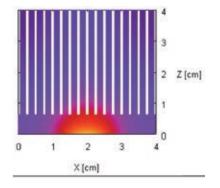
核融合、プラズマ閉じ込め配位、物理シミュレーション 所属学協会・研究会


日本物理学会、プラズマ核融合学会、情報処理学会

研究テーマ

【核融合理論物理学 および 計算物理学】

●プラズマの磁場閉じ込めに関する理論的研究


反転磁場配位の数値平衡解

Contour of flux function of highly elongated low aspect ratio tokamak

●計算物理学

計算機シミュレーションによりもとめた ヒートシンク内の温度分布

- ・人力飛行機, 模型飛行機関連の公開講座, 講演, 指導など
- ・並列計算機を用いたプラズマの磁場閉じ込めに関する研究
- ・ワンチップマイコンを用いた各種制御に関する研究

所属部門	エネルギー
研究分野	熱工学

芳賀 正和 教授 機械工学科 熱 · 物質移動研究室 hmtl@fukui-nct.ac.jp

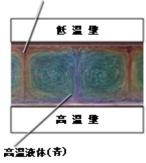
専門分野

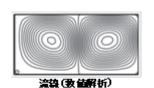
伝熱工学, 熱·物質移動

キーワード

熱伝達促進, 数値解析, 可視化実験

所属学協会・研究会


日本機械学会, 日本伝熱学会


研究テーマ

【自然対流の解析】

液体内の温度差により発生する自然対流によって、加熱や 冷却等の熱伝達が行われます。このときの液体内の様子を、 可視化実験と数値シミュレーションによって解析し、熱伝達 って解析しています。例えば、融液の結晶化や液 の促進や、流れと温度分布の制御に関する研究を行っていま 体の蒸発などの相変化について、分子の挙動を観 す。また、液体内に溶解している物質の濃度分布の解析も行り察する微視的解析を行っています。 なっています。

低温液体(未)

等温袋(致菌解析)

【相変化の分子シミュレーション】

温度と物質の状態の関係について, 分子動力学 法による数値シミュレーションを行うことによ

液体

固液共存

固体

主要設備・得意とする技術

- 数値シミュレーションにより、流体内の対流の様子や温度分布・物質の濃度分布などを解析します。
- ・ 感温液晶を用いてシリコーンオイル内の流れの様子と温度分布を可視化する実験装置を有しています。
- ・ 分子動力学シミュレーションにより、熱流体系の分子挙動に関する解析を行っています。

- ・加熱・冷却等の熱伝達促進技術
- ・ビー玉スターリングエンジン等を用いた科学実験の公開講座・出前授業

所属部門	エネルギー
研究分野	流体工学

藤田 克志 教授 機械工学科 fujita@fukui-nct.ac.jp

専門分野

流体工学、レオロジー

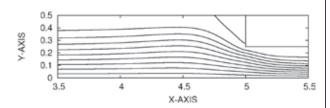
キーワード

再生可能エネルギー、小水力、粘弾性流体、CFD、流れの可視化

所属学協会・研究会

日本機械学会, 日本流体力学会, 日本工学教育協会

研究テーマ


【小水力発電用水車の設計と設置】

小水力発電は再生可能な新エネルギーのひとつ。日本は、 降雨量が世界の中でも多く、山間の河川も無数にあるため、水力エネルギーの利用は日本の風土に適しています。 右の写真はらせん型水車を自作し、公園内の湧水のある 池に設置したときの様子です。らせん型水車は、低流量・ 低落差の環境下でも出力電力を得ることができます。

【粘弾性流体の流れの数値シミュレーション手法とモデル化】

高分子溶液・融液、血液などに代表される粘性と 弾性の性質を兼ね備えた粘弾性流体の流れは様々 な特異流れが発生します。特異流れの発生メカニ ズムの解明のために数値シミュレーション手法の 開発と粘弾性流体のモデル化を行います。

特異流れのひとつとして、急縮小流れで発生するDivergence Flowがあります。この流れはプラスチックの射出成型などで実際に観察することができます。右上の図は、Divergence Flowを数値シミュレートした結果です。

主要設備・得意とする技術

【得意とする技術】

流れの数値シミュレーション、流れの可視化、PIV計測など

産官学連携や地域貢献の実績と提案

【出前授業の実績】

おもちゃづくり教室 (バルーンカー, コアンダカー, 簡単ホバークラフト, 紙トンボ, くるくるロケットなど)

所属部門	エネルギー
研究分野	電子・電気材料工学
1	II

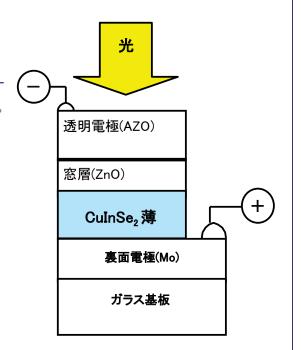
山本 幸男 教授 電気電子工学科 電子デバイス研究室 yukio@fukui-nct.ac.jp

専門分野

電子デバイス工学、材料物性工学

キーワード

半導体, 薄膜, 太陽電池


所属学協会・研究会

応用物理学会. 電子情報通信学会

研究テーマ

【化合物半導体薄膜を用いた次世代太陽電池の開発】

- CuInSe₂やCuGaTe₂など多元系化合物半導体薄膜をベースとした次世代太陽電池の実現を目指して研究しています。このタイプの太陽電池は比較的高効率で放射線にも強いことから宇宙用の太陽電池としても期待されているのです。
- このタイプの化合物半導体は組成を制御することでそのエネルギーギャップを変化させることが可能であり、太陽電池だけではなく、光センサーなど各種光電変換デバイスへの応用展開が期待されています。

次世代薄膜太陽電池の構造

主要設備・得意とする技術

3種類のターゲットをセットすることのできる高周波スパッタ装置、および真空蒸着装置を有しています。 これにより様々な薄膜材料 (厚さ 0.1μm 前後) を作製することが可能です。

産官学連携や地域貢献の実績と提案

【技術相談】 薄膜サンプルの作製及び×線光電子分光分析、結晶構造解析など

【公開講座】 「やってみようソーラーカー手作り教室」(小学生高学年対象)

所属部門	安全・防災
研究分野	構造工学・地震工学・維持 管理工学

阿部 孝弘 嘱託教授 環境都市工学科 構造工学研究室 abe@fukui-nct.ac.jp

専門分野

土木工学, 構造工学

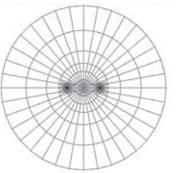
キーワード

亀裂, エネルギ解放率, コンクリート, 有限要素法, E 積分, エンジニアリング・デザイン

所属学協会・研究会

土木学会,日本機械学会,日本材料学会,日本工学教育協会

研究テーマ


【エネルギ解放率破壊規準による亀裂進展挙動】

材料中にある亀裂が荷重条件や拘束条件によって進展するかしないかをエネルギ解放率による破壊規準によって考察しています。構造物に亀裂があるからといって、その亀裂がすぐに破壊につながるかどうか。どのようにその亀裂の進展を防げばよいか。破壊力学的考察が必要です。破壊力学パラメータとして、非線形材料にも適用可能なエネルギ解放率を破壊規準としています。エネルギ解放率はE積分という経路独立な積分を用いて有限要素法で算出します。

【エンジニアリン・デザイン教育】

現在の技術者に求められている能力にエンジニアリング・デザイン 能力があります。エンジニアリング・デザイン能力の定義には種々あ りますが、簡単に言えば、正解がない問題に対しても実現可能な解を 見つけ出す能力であると言えます。このような能力がどのような教育 から身に付けることができるかを検討しています。

主要設備・得意とする技術

環境都市工学科構造材料実験室に設置された 2000kN 連立試験機(東京試験機) 及び 50kN 万能試験機(インストロン) による静的載荷試験が可能です。

産官学連携や地域貢献の実績と提案

コンクリート構造の耐久性,長寿命化に関する検討 力学的知識に基づく公開講座や出前授業(パスタタワー,煉瓦アーチ)

研究分野	

所属部門

安全・防災

固体地球惑星物理学

岡本 拓夫 教授 一般科目教室(自然科学系) 地球物理学研究会 okamoto@fukui-nct.ac.jp

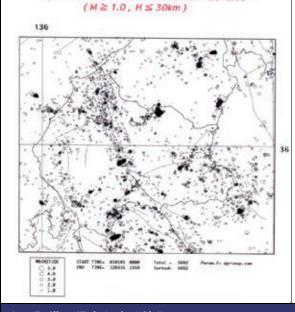
専門分野

地震学, 縮災

キーワード

福井県及び周辺の地震活動、地震に関連する諸現象、 強震動,防災教育

所属学協会・研究会


日本地震学会, 地球惑星連合, 福井地震防災研究会, 福井県防災士会顧問 (防災士)

研究テーマ

【福井県及び周辺の地震活動解析】

(京都大学との共同)

Epicenter for Reihoku Area 2001.01 - 2012.03

【地震発生に伴う諸現象の解析】

池田観測室(地電位差、地震)

【SSH 関連. 防災教育】

藤島高校 SSH 武生高校 SSH 福井県実践的安全教育 学校防災アドバイザー

主要設備・得意とする技術

地震観測

産官学連携や地域貢献の実績と提案

編書 (30 年度)

「私たちはなぜ科学するのか」(東京書籍)

講演等(令和元年度)

- ・講演、「地震・複合災害と非難ー福井平野とその周辺ー」、グランディアホール、嶺北消防協会、2019、04/23
- ・講演、「今、何故、鯖江断層を考えているのか」- 福井地震 71 年 の備忘と直下型の危険性 -

鯖江市高年大学、2019、05/21.

- ・講義、「地震の発生と報道の重要性」、FBC、アナウンサー研修、2019、06/09.
- ・講義、「地震の仕組みと被害」、「火山噴火の仕組みと被害」、鯖江市防砂リーダー養成講座、鰤ステモモアド 2019、06/09.
- ・講演、「鯖江断層の現状Ⅱ」、車の道場、鯖江市防災交流会、2019、06/30.
- ・講演、「嶺南の地震とその複合災害」、敦賀市防災士の会、敦賀市西公民館、2019、06/30.
- ・講義、「地震学ー鯖江断層の今ー」、鯖江市高年大学、2019、9月.
- ・講義、「地震の仕組みと被害」、「火山噴火の仕組みと被害」、鯖江市防災リーダー養成講座、鯖江市役所、2019、10/06.
- ・講演、「鯖江断層の分岐」、車の道場、鯖江市防災交流会、2019、11/10. ・講演、福井県の地震活動と防災教育の必要性、防災シンポジュウム、敦賀きらめきみなと館、福井大学、2019、11/16.
- ・講演、「麻生津地区の揺れと鯖江断層」、麻生津公民館、2019、11/29.
- ・研修、「地震における避難訓練の効果的あり方とその実際」、美浜中央小学校、2019、12/02.
- 講義、「福井の地震活動」、福井県消防学校、初等幹部科、2019、12/06.
- ・講演、「最新の鯖江断層ー福井平野西縁との関係ー」、文化の館、鯖江市防災交流会、2020、02/09.
- ・研修、「鯖江断層の現状」、BNS 研修、さばえ NPO センター、鯖江市、2020、02/27.

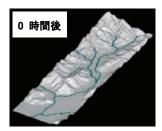
所属部門	安全・防災
研究分野	水工学,海岸工学
	田安 正茂 准教授

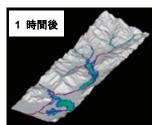
田安 正茂 准教授 環境都市工学科 水工学研究室 tayasu@fukui-nct. ac. jp

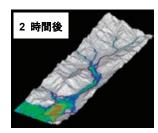
専門分野

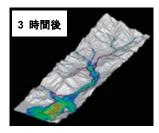
土木工学, 水工学, 海岸工学

キーワード


豪雨水害,洪水氾濫,波浪変形,漂砂,海岸地形変化 所属学協会·研究会


土木学会,日本流体力学会,応用生態工学会


研究テーマ


【河川の氾濫解析や海岸の波浪変形計算など、流れや波の解析】

●豪雨時の堤防からの溢水や堤防決壊による河川水の氾濫流をシミュレーションし、 避難場所、避難経路の安全性を検討しています。

●砂浜海岸を横断する河川の流路を定期的に計測し、波と流れによる砂移動のメカニズムを把握します。 **航空写真で比較すると**

現在 週1回の 現地計測を実施中

主要設備・得意とする技術

水理実験室に設置された開水路(D0.6m×H0.4m×L9m), 管水路(ϕ 80, ϕ 50ともにL4m)を管理しています。 開水路は最大流量2.4m³/min, 可変勾配で最大1/40まで可能であり, 魚道ブロックの模型実験や小水力発電 水車の実験などを行うことができます。また, 造波実験室に設置された断面2次元造波水路(D0.6m×H0.8m×L24m)では, 規則波, 不規則波, 孤立波を発生(最大波高約20cm)させることが可能であり, 沿岸域の波浪場や津波場の模型実験などを行うことができます。

- ・洪水時の水位計測装置を有した護岸ブロックの技術開発
- ・砂浜海岸における砂の移動と地形変化の分析

所属部門安全・防災研究分野自然災害科学・防災学

辻子 裕二 教授環境都市工学科地盤防災研究室harima@fukui-nct.ac.jp

専門分野

防災学, 地盤工学, 空間情報学

キーワード

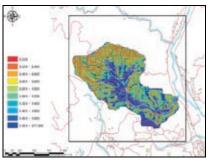
防災・減災、地域防災、地盤防災、防災ツール

所属学協会・研究会

土木学会, 地盤工学会, 日本写真測量学会, 日本リモートセンシング学会, 日本自然災害学会, 環境情報科学センター, 日本雪工学会, 日本防災士会, 福井県防災士会

研究テーマ

【レジリエント社会づくり】


防災に対するソフト対応を推進することで、社会全体のレジリエンスの向上を図ることを検討しています。このため、時間経過に伴う防災・減災意識の低下を防ぐために、平時から親しみを持って防災マインドを維持するに資するアイテム(教材)の開発を進めています。

防災かるたの一例

【土砂災害リスク評価】

土砂災害は、住民の生命に直接的に影響を及ぼす危険な災害です。このリスクを、地域という範囲ではなく、わが家(My Hazard)の観点で検討し、正しい「行動」を促すシステムづくりを進めています。

GISによる災害リスク管理

【避難行動判断システム】

マルチハザード発生時に、適切な避難行動を行うための、避難判断支援システムの開発を進めております。AI(人工知能)を用いて、ビッグデータの中から最適な判断を行うシステムを検討中です。

避難判断の出力例

主要設備・得意とする技術

- ・防災の地域力向上に資する防災アイテム(防災紙芝居,防災かるた他)(開発済み)
- ・防災訓練や防災マニュアルづくりに対するアドバイス
- ・熱画像解析 (パッシブリモートセンシング)
- 人工衛星画像を用いた崩壊形状の3次元的計測

- 各種委員(国交省総合評価委員,市町防災関連会議委員等)
- 地域団体への協力(福井県防災士会、自主防災組織)
- 各種防災支援(福井県防災アドバイザー派遣事業、各種防災講演)

 所属部門
 安全・防災

 研究分野
 空間情報工学

辻野和彦教授 環境都市工学科 空間情報工学研究室 tsujino@fukui-nct.ac.jp

専門分野

リモートセンシング、地理情報システム

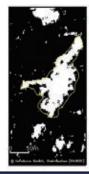
キーワード

土砂災害(斜面崩壊,土石流),画像計測,UAV(無人航空機(ドローン)),VR(バーチャルリアリティ)

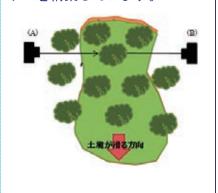
所属学協会・研究会

土木学会,日本自然災害学会,日本写真測量学会,地理情報システム学会,環境情報科学センター,日本防災士会(福井県防災士会)

研究テーマ


【UAVを用いた現地調査支援】

現地調査を支援することを目的としてUAV (Unmanned Aerial Vehicle:無人航空機)を用いた空撮を行っています。斜面崩壊形状の把握,掘削工事の土工量の把握,河床形状の把握に関する研究に取り組んでいます。下図は、掘削工事後のDSM (数値表面モデル)の一例です。


【高分解能SAR画像を用いた斜面 崩壊の検出】

高分解能のSAR(合成開ロレーダ)画像を用いて地震により発生した斜面崩壊を検出する方法を研究しています。下図は、インドネシア(スマトラ島)で発生した斜面崩壊を検出した事例です。

【ビデオカメラを用いた地すべり /斜面崩壊の検知に関する研究】 Web カメラから取得した動画を リアルタイムで処理することに より、ターゲットの移動を検知 することで、近隣住民に地すべ りや斜面崩壊の警報を出すシス テムを構築しています。

主要設備・得意とする技術

・UAV (情報科学テクノシステム社製 GrassHopper: 1 台, DJI 社製 Phantom 3:3 台所有): 上空から空撮を 行うドローンを所有しています。主に土砂災害現場や掘削工事現場において空撮を行うことができます。また、橋梁点検用の上向き撮影用カメラジンバルや植生を監視するための近赤外線カメラも所有しています。

・3D VR システム (FORUM 8 社製 UC-win/Road):環境都市工学科棟3階のデザインスタジオにおいて3D VR システムを管理しています。仮想空間に都市を構築し構造物や建築物の施工前後の比較を行うことができます。また、歩行者や運転者の視点で動画を作製することもできます。

- ・Webカメラを用いた土砂災害検知システムの開発
- ・河川掘削工事における土工量の推定
- ・UAVによる空撮画像を用いた3Dモデルの構築
- ・獣害対策支援のための地理情報システム(GIS)の構築
- 高分解能衛星画像を用いた樹種分類(農地分類)

研究分野 土木工学,建築学	

野々村 善民 教授 環境都市工学科 建築環境研究室 nonomura@fukui-nct.ac.jp

専門分野

建築環境工学、風工学、建築設備キーワード

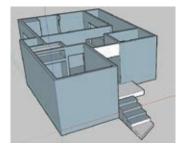
風環境, 新エネルギー, 都市洪水

所属学協会・研究会

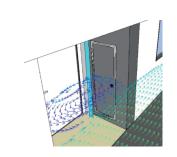
日本建築学会

研究テーマ

【水貯留地盤の研究開発】


都市洪水が発生した際の避難時間を確保することを目的として, 透水性と保水性を両立した地盤 を用いて,水貯留地盤を開発します。

水貯留地盤の効果を明らかにするために、流体数値シミュレーションを用いて、地表面の水の流れを予測します。


【画像測量による建築物の3Dモ デル作成技術の開発】

本技術開発の目的は、既存の空家の現状調査に要する作業の省力化です。使用する機器は汎用のスマートフォンです。複数の画像データで得られた点群データと3D-CADを用いて、作業時間は3時間以下を目標とします。

【環境性能に配慮した建築計画に 関する研究開発】

日本国内では、夏期の亜熱帯化により、飛翔昆虫による感染症の危険が高まっています。そこで、本研究開発では、建築物の形状により、外壁表面近傍の風の流れを制御し、室内空間において屋外からの危険性を抑えることを目的としています。

主要設備・得意とする技術

- ・熱流体数値シミュレーション Stream による流体解析
- ・河川氾濫シミュレーション iRIC による都市洪水の予測
- ・PickUp プログラムによる気象データの収集と各種統計解析
- ・CASBEE による建築物の環境性能評価

- ・水貯留地盤の開発
- ・公共施設における都市洪水対策の計画立案
- 大規模公共建築物の風環境調査
- ・各種建築物の技術コンサルタントの実施

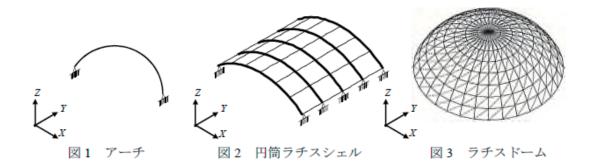
所属部門	安全・防災
研究分野	建築構造・材料

樋口 直也 助教 環境都市工学科 higuchi@fukui-nct.ac.jp

専門分野

建築構造学

キーワード


アーチ,シェル・空間構造,座屈,有限要素法解析所属学協会・研究会

日本建築学会,土木学会,日本建築構造技術者協会

研究テーマ

【シェル・空間構造の性状分析に関する研究】

工場や体育館、ドームなどの大規模建築物の屋根に用いられるアーチやラチスシェルなど に対して構造解析を行い、得られた結果を分析しています。

主要設備・得意とする技術

- 構造物の数値解析
- ・パラメトリック解析による構造物の最適形状の探索

産官学連携や地域貢献の実績と提案

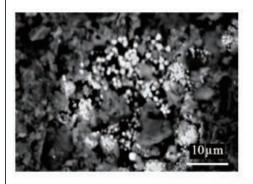
小さな大工さん講座「デザイナーになろう!」

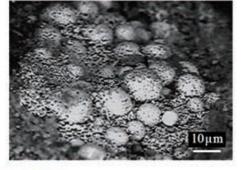
所属部門	安全・防災
研究分野	環境材料・リサイクル

山田 幹雄 嘱託教授 環境都市工学科 交通工学研究室 yamasan@fukui-nct.ac.jp

専門分野

土木工学, 地盤環境工学, 建設材料学 キーワード


廃棄物·副産物利用, 浅層地盤改良, 土構造物 所属学協会·研究会


土木学会, 地盤工学会, 日本材料学会, 資源·素材学会, 日本鉄道施設協会

研究テーマ

【鉄スラッジ混入安定材を添加した黄鉄鉱含有土の強度、支持力特性に関する研究】

黄鉄鉱(パイライト)を含む土は地中に在るときには中性ですが、掘削工事などによって空気に曝されると短期間で極強酸性に移行するのが通例です。これを、顕在的酸性硫酸塩土と称します。一般に、軟らかい土を固めるには石灰やセメントのような強アルカリ性の安定材を使用します。しかし、元来が極強酸性の土を対象とするときには多量の安定材を必要とします。そこで、炭酸カルシウムを混ぜて中和を促しています。この研究では、炭酸カルシウムのほかにレアアース由来鉄スラッジを石灰、セメントとともに顕在的酸性硫酸塩土に添加した場合の一軸圧縮強さ、強度定数やCBRの経時変化を調べています。併せて、長期にわたり中性を維持している黄鉄鉱含有土の理化学的性質を、CNS元素分析を行って明らかにしようとしています。

試料の黄鉄鉱の観察像

鉄スラッジ

主要設備・得意とする技術

高容量圧縮試験装置、電動コーン貫入試験装置や一面せん断試験機を用いて試料土単体、あるいは、安定処理土のCBR、一軸圧縮強さ、コーン指数や強度定数を求めることができます。また、安定処理土の強度発現過程および耐水性(体積膨張、崩壊)を調べる用途に、中容量インキュベータおよび恒温水循環装置を設置しています。

- ・鉄スラッジを混入した安定材の極強酸性土への適用性の確認
- 浄水場発生土(浄水汚泥)の早期含水減量策の提案
- ・ジオテキスタイルとの併用による浚渫泥土の活用策
- ・ 牡蠣殻の道路路床構築材料としての利用に関する技術開発

所属部門	安全・防災
研究分野	都市計画・建築計画、 防災学

大和 裕也 助教 環境都市工学科 yamato@fukui-nct.ac.jp

専門分野

都市防災計画

キーワード

避難所運営計画、津波避難計画、MR(Mixed Reality)

所属学協会・研究会

日本建築学会、日本都市計画学会、地域安全学会

研究テーマ

【避難者の生活環境と教育の再開を考慮した避難所運営計画に関する研究】

避難者にとって良好な生活環境を確保する観点と、学校教育の再開の観点より、小学校における避難所運 営計画の検討を行っています。

【MR を用いた避難所の居住空間の検討】

MR 技術を用いて居住空間の生活環境の評価、分析を行っています。

産官学連携や地域貢献の実績と提案

• 地域のまちづくりや防災における問題解決

所属部門	安全・防災
研究分野	地震工学,防災学

吉田 雅穂 教授 環境都市工学科 地震防災研究室 masaho@fukui-nct.ac.jp

専門分野

土木工学, 地震工学, 防災学

キーワード

地震、防災・減災、ライフライン、木材、文化遺産 所属学協会・研究会

土木学会, 地盤工学会, 日本建築学会, 日本自然災害学会, 日本地震工学会, 日本工学教育協会, 福井地震防災研究会, 福井県木材利用研究会, NPO 福井地域地盤防災研究所, 関西ライフライン研究会

研究テーマ

【木材を用いた地盤補強技術】

木材の用途拡大のため、丸太を地盤に打設して地盤補強する技術を開発し、戸建住宅の液状化対策や道路盛土の軟弱地盤対策に活用しています。下図は福井県小浜市で行った現場施工実験の様子です。

【ジオシンセティックスと砕石 を利用した液状化対策】

ジオシンセティックスを砕石で 挟み込んだ層を道路盛土の直下 に敷設し、盛土の液状化時変形を 抑制する工法を開発しています。

【ウェブ版地震防災支援システム】

地震防災教育に活用するため、 1948 年福井地震等の災害資料を デジタルアーカイブ化してイン ターネット上で公開しています。 また、アンケート震度を調査する サイトを利用して、地震時の地域 の詳細震度分布を推定していま す。

【文化遺産の防災対策】

文化遺産を自然災害から守り後世に継承することは大変重要です。そこで、福井県が所有する文化財建造物と立地地盤の耐災性を調査し、今後の防災対策を提案しています。下図は調査対象の 1 つである越前市の旧谷口家住宅です。

主要設備・得意とする技術

〇水平 2 軸地震波振動台 (株式会社サンエス, SPT2D-20K-85L-80T)

2m 四方のテーブル上に構造物模型や工業製品を設置し、地震波、規則波、衝撃波を水平 1 方向または 2 方向同時に入力して、その応答を計測できます。5,000kg までの積載が可能であり、無負荷の状態では 加速度 2G、速度 120cm/s、変位±20cm の地震波で加振する能力を有しています。

○携帯用振動計(株式会社東京測振, SPC-52, VSE-15D5)

コンピュータ搭載の可搬型振動計であり、地盤や構造物の常時微動観測、余震観測、環境振動観測などが行えます。

- ・木材を用いた液状化対策と軟弱地盤対策の技術開発
- ・構造物や工業製品の振動特性の分析
- ・地域の地震防災計画の立案
- 地震防災に関する講習会

所属部門	情報・通信
研究分野	計算機システム

青山 義弘 教授 電子情報工学科 電子情報機器実験室 yfa@fukui-nct.ac.jp

専門分野

組込みシステム、計算機工学

キーワード

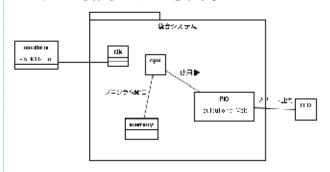
組込みシステム、FPGA 開発、HDL 設計

所属学協会・研究会

情報処理学会

研究テーマ

【HDLによるシステム設計】


HDL (Hardware Description Language) は論理回路やシステムの振る舞いを記述するための言語です。C やJava言語がプログラムの振る舞いを記述するのと同じような感覚で設計出来ます。LSIに含まれる回路の規模が膨大になった現在,回路図でデジタル回路を設計するようではとても間に合わないので、HDLで設計し、コンピュータに自動設計をさせて合理化しています。

adder.v

```
/* 加算演算子による4ビット加算回路 */
module adder(a,b,q);
input [3:0] a,b;
output [3:0] q;
assign q = a + b;
endmodule
```

【FPGAによるシステム開発】

組み込みシステム(Embedded system) とは、特定の機能を実現するために家電製品や機械等に組み込まれるコンピュータシステムのことです。身の回りの家電品を含め様々なシステムにマイコンや LSI が搭載され動作しています。 FPGA (Field-programmable gate array) とは、この LSI を工場に発注することなく自前で構成できる IC で、CPU や周辺回路を含んだ独自のマイコンも作ることができます。

主要設備・得意とする技術

- ・Arduino などのマイコンボードによる設計
- ・VerilogHDL などの HDL による回路設計
- FPGA によるシステム開発

産官学連携や地域貢献の実績と提案

・HDL, FPGAによるLSI開発環境整備: VHDL, VerilogHDL, systemCなどの言語によるシステム開発のための環境整備,並びにFPGA実装のための回路設計

777 / WZ	所属部門	情報・通信
研究分野 通信・ネットワーク工字	研究分野	通信・ネットワーク工学

大久保 茂 嘱託教授 電気電子工学科 情報通信研究室 okubo@fukui-nct.ac.jp

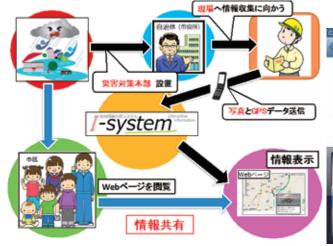
専門分野

電磁波工学,情報通信工学

キーワード

アンテナ, ネットワーク, Web アプリケーション

所属学協会・研究会


映像情報メディア学会、北陸信越工学教育協会

研究テーマ

【携帯電話を用いて災害情報を提供するWebアプリケーションシステムの開発】

携帯電話のGPS機能を用いた災害・緊急時における被害情報を自治体が収集し、その情報を住 民が閲覧できるWebアプリケーションシステムの開発と高機能化を図っています。

上記のWebアプリケーションシステムをスマートフォンでも利用可能にするため、スマートフォン対応のアプリケーションの開発を行っています。

被害情報投稿時の画面

住民閲覧時の画面

産官学連携や地域貢献の実績と提案

・携帯電話のGPS機能を利用した消防団支援システム

所属部門	情報・通信
研究分野	人間情報学
	小越 咲子 准教授 電子情報工学科 ogoshi@fukui-nct. ac. jp

専門分野

認知科学, 福祉工学, 教育工学

キーワード

ICT, BMI (Brain Machine Interface), ソーシャルスキルトレーニング

所属学協会・研究会

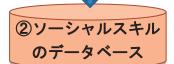
電子情報通信学会,日本設備管理学会,日本設備管理学会就労支援技術研究会,IEEE,日本心理学会,日本特殊教育学会、日本LD学会、日本小児精神神経学会

研究テーマ

【研究テーマ1】

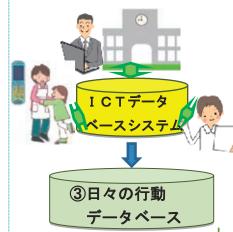
① 脳科学的手法による 社会的認知特性の解明 BMIの開発

脳科学 実験 BMI 等


①行動と脳機能特性 のデータベース

【研究テーマ2】

② 社会性を育成する 教育プログラムの開発



学習支援システム等

【研究テーマ3】

③ スマホ等による家庭⇔学校⇔ 地域専門機関の連携システム

ITプラットホームの構築

生涯発達支援へ

主要設備・得意とする技術

脳波計など

認知科学、教育工学、福祉工学、ICTシステムなど

産官学連携や地域貢献の実績と提案

学校と家庭と専門家をつなぐ子供見守りシステムの開発

障害者の就労支援システムの開発

たんぽぽ教室 (小中学生のソーシャルスキルトレーニングの教室), 脳トレキッズ (小中学生のモノづくりや課外体験を行う教室) など

ひらめきときめきサイエンス、サイエンスパートナーシップなど

所属部門	情報・通信
研究分野	通信・ネットワーク工学

川上 由紀 講師 電子情報工学科 kawakami@fukui-nct.ac.jp

専門分野

アンテナ工学、通信工学

キーワード

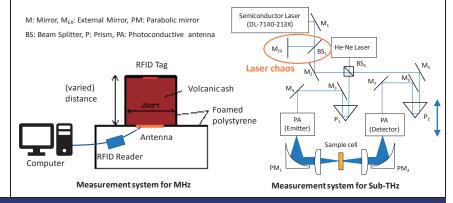
アンテナ、メタマテリアル、RFID、テラヘルツ分光

所属学協会・研究会

電子情報诵信学会

研究テーマ

【メタマテリアルを用いた アンテナの高性能設計】


メタマテリアルとは、自然界に 存在する媒質が通常持たない性 質を示す人工媒質である。近年、 様々なメタマテリアルが実現さ れており、メタマテリアルのアン テナへの適用が期待されている。 アンテナの素子間相互結合の低 減、不要放射の抑制、放射パター ン制御など、メタマテリアルを用 いてアンテナ・伝搬分野における 諸問題を解決する。

【次世代RFID探索システムの実現を目指した

MHz帯からTHz帯における電磁波の伝送特性の解明】

雪崩・土砂崩れ・噴火など自然災害の多いわが国において、災害救助の迅速化は喫緊の課題である。登山者などに RFID タグを身につけてもらうことで、災害時に雪・土砂・火山灰中を探索する方法が考えられるが、各遮蔽物による伝送特性の変化は未解明である。本研究では雪・土砂・火山灰等の各遮蔽物内における電磁波の伝送特性を MHz 帯から THz 帯まで広く調べ明確にすることで、通信に使う最適波長を明らかにすることを目的としている。 MHz 帯では市販の RFID モジュールを、Sub-THz 帯ではレーザーカオスを用いたテラヘルツ分光システムを使用している。

主要設備・得意とする技術

・ネットワークアナライザ(8753ES)

周波数:30kHz~6GHz

- ・Scratchでプログラミング(小中学生向け公開講座)
- ・RFIDを用いた遭難者探索システムの技術開発
- 電子情報通信学会北陸支部運営委員

所属部門	情報・通信/計測・制御
研究分野	認知科学,知能情報学

小松 貴大 助教 電子情報工学科 komatsu@fukui-nct.ac.jp

専門分野

認知科学, 心理物理

キーワード

知覚, 視覚運動, 運動学習

所属学協会・研究会

日本神経科学学会, 日本神経回路学会

研究テーマ

【知覚と運動の乖離に関する研究】

ヒトは錯視図形を見たときに左の中心円が大きく感じます(知覚)。しかし、実際に掴みにいく運動をしても両方の運動に差が見られません。つまり、運動は知覚結果に影響されないということです。このように運動が知覚の影響を受けないことが起こるメカニズムについて仮説をたてて検証しています。

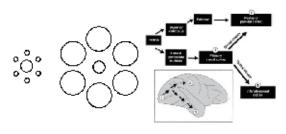


図 1 錯視図形

図2 脳内処理

【視線計測装置開発】

現在市販されている視線計測装置は非常に高価です。 そこで非常に安価で高精度に計測できる視線計測装置の 開発と、より高速に画像処理して視線を導き出すための アルゴリズムについて研究しています。マウス等にとっ てかわる新しいインターフェースや福祉分野への寄与を 目指しています。

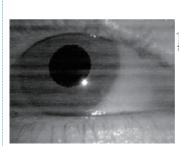


図3 画像処理後の瞳孔

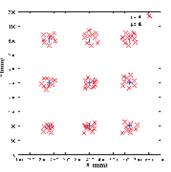


図3 計測結果

主要設備・得意とする技術

・ヒトの運動・知覚に関する計測を行い、データを解析することによってヒトの脳内処理メカニズムを解明することに応用しています。計測は主に共同研究先である福井大学・人間学習システム研究室にて行っています。そこで、3次元運動計測装置(分解能 0.01mm 以下、誤差 0.1mm 以下)、視線計測装置(注視点誤差 0.5度以下)、筋電計測装置(14ch、周波数特性 0.1~200[Hz])などを利用して研究を行っています。

- ・中学生を対象としたマイコン・電子デバイス制御に関する講座
- ・商工会議所と連携した中小企業向けの「社員・車両スケジュール管理システム」の開発

所属部門	情報・通信
研究分野	計算機システム・ネットワーク

斉藤 徹 教授 電子情報工学科 インターネット応用研究室 t-saitoh@ei.fukui-nct.ac.jp

専門分野

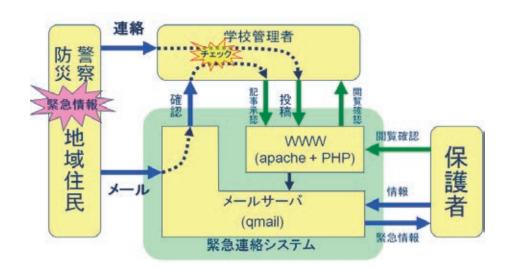
カメラ情報を利用したロボット制御, インターネット応用技術

キーワード

インターネット、緊急連絡システム

所属学協会・研究会

電子情報通信学会,情報処理学会


研究テーマ

【丹南地域緊急連絡システム】

● 地域の安全情報発信を目的とした緊急連絡システムを丹南地域の学校対象に無償でサービスを提供しています。

現在,越前市の全小中学校および鯖江市の半数の小中学校で,不審者などの情報を保護者に発信するために利用されています。

● これらのシステムは、災害発生時 の緊急連絡にも応用されています。

主要設備・得意とする技術

メールや Web などのインターネットを活用したネットワークサービスの開発などに取り組んでいます。

産官学連携や地域貢献の実績と提案

福井県歯科医師会と協力し、歯みがきロボットコンテストなどの運営にも協力しています。 これに関連し中学校向けのロボット制御の講習会などにも積極的に協力したいと考えています。 また、高校の技術系教員向けの組込系コンピュータの講習会などにも協力していました。

所属部門	情報・通信
研究分野	生体分子科学
	佐々 和洋 准教授

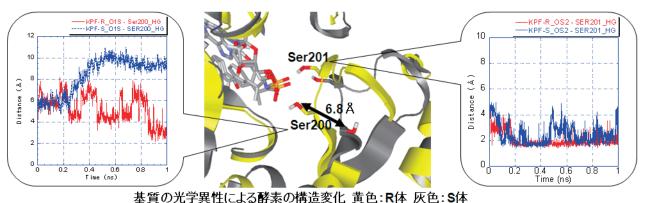
佐々 和洋 准教授 物質工学科 分子設計学研究室 sasa@fukui-nct.ac.jp

専門分野

生命情報学, 計算化学, 量子化学

キーワード

分子シミュレーション


所属学協会・研究会

日本化学会、日本コンピュータ化学会

研究テーマ

【分子動力学法による生体高分子の機能解析】

- タンパク質や核酸など生体高分子の構造を、分子シミュレーションにより再現し解析することを目標としています。
- 酵素基質複合体やそれらの活性中心の予測や挙動を解析することにより、より高活性な酵素の開発などに利用可能です。

金貝の元子共正による研究の構造文化 黄色・N体 八色・3体 ⇒活性への寄与が大きいと思われるアミノ酸の選出

産官学連携や地域貢献の実績と提案

・次世代シミュレーション技術者教育プログラム

豊橋技術科学大学が中心となり、大規模かつ高精度な予測を可能にする次世代シミュレーション技術を開発できる人材、そして、"ものづくり"を支援して新技術や新材料の研究開発を牽引するより高度なシミュレーション技術を使いこなせる人材を育成するための取り組みに参加しています。

所属部門	情報・通信
研究分野	ソフトウェア

清水 幹郎 技術専門職員 教育研究支援センター mshimizu@fukui-nct.ac.jp

専門分野

情報学基礎、計算基盤

キーワード

アルゴリズム理論、プログラミング言語、情報理論所属学協会・研究会

応用物理学会教育分科会. 日本工学教育協会

研究テーマ

【プログラム言語による演習と利用事例】

プログラム言語授業支援

低学年:プログラム言語学習の授業・演習支援

高学年:プログラムで行うコンピュータを使用した数値計算演習・学生実験支援

電子情報工学科1学年の授業支援として担当した専門基礎演習「マイコンでプログラミング」について、第66回(平成30年度) 応用物理学会春季学術講演会にて発表。

「マイコンを使用した低学年学生の情報基礎総合演習」 使用環境の確認、周辺機器の接続、プログラム演習、 信号制御回路の拡張の各演習と学生の自己スキル評価

コンピュータを利用した考古学資料解析の支援(~ 平成19年) 資料の画像認識、データ集約のシステム化に関する共同研究

産官学連携や地域貢献の実績と提案

令和元年度 公開講座

教育研究支援センター「小学生夏休み親子科学教室」,電子情報工学科「スマートフォンのWebゲームアプリを作ろう!」

令和元年度 出前授業 さばえ環境フェア2019内 ステージ演示「福井高専科学実験教室」

平成30年度 公開講座

教育研究支援センター「小学生夏休み親子科学教室」,電子情報工学科「IchigoJamでゲーム機をつくる!?」 平成30年度 出前授業 さばえ環境フェア2018内 ステージ演示「火ってなんでつくんだろう?」

平成29年度以前

教育研究支援センター公開講座のほか、歯みがきロボットコンテスト(社団法人 福井県歯科医師会 主催、 本校地域連携テクノセンター 共催)にて競技主審支援を担当

所属部門	情報・通信
研究分野	情報学
	·

下條 雅史 嘱託教授 電子情報工学科 shimoO@ei.fukui-nct.ac.jp

専門分野

数值計算,量子物理,素粒子物理学

キーワード

シミュレーション、連続体、フラクタル、

素粒子模型

所属学協会・研究会

日本物理学会, 電情報通信学会

研究テーマ

【MPS法による連続体シミュレータの 【フラクタルによる自然造形 【非可換幾何学と超対称性】 開発】

流体や弾性体といった連続体を多 くの粒子の集まりと考え、圧力や密 度といった物理量を各粒子に付随し た重み関数を用いたモデルで計算す る粒子法を使うと, 連続体の大変形 をリアルにシミュレーションできま す。連続体の初期の形状や境界条件 をGUIで簡単に設定でき、なおか つ.3次元のシミュレーションも高速 で行えるシミュレータの開発を目指 しています。

物の描写】

様々な結晶、雲、リアス式 形物の形状は、全体と相似 な形をした微小部分によっ て構成されるとするフラク タル幾何学によって説明さ れる。複数のフラクタル図形 の発生法とレンダリングテ クニックを使って、これら の造形物をコンピュータに 自動描画させるソフトを開 発しています。

90 年代に, Connes らは, 非可換幾 海岸、樹木といった自然の造 何学を用いて、素粒子の標準模型 と、そのゲージ相互作用および Higgs 場. さらには. 重力場まで. 統一的に記述する形式を発表して フィールズ賞を受賞しましたが. free parameter の多さやヒエラル キー問題といった、標準理論の持つ 問題が残されています。 超対称な 模型にこの手法を拡張することで、 これらの問題の解決を目指してい ます。

産官学連携や地域貢献の実績と提案

「情報処理技術者試験講座」基本情報処理技術者試験受験者向けの演習講座

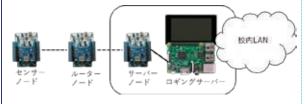
「初めての簡単プログラミング」 初心者むけの言語スクラッチによる小中学生向けのプログラミング 教室

所属部門	情報・通信
研究分野	通信・ネットワーク工学

内藤 岳史 技術専門職員 教育研究支援センター naitou@fukui-nct.ac.jp

専門分野

情報ネットワーク


キーワード

IoT, センサーネットワーク, 保育 ICT

研究テーマ

【センサーネットワーク】

労働・学習環境改善のため、オリジナルセンサーを用いて温度・湿度・暑さ指数 (WBGT) を計測する研究を行っています。

【保育園をICTでサポート】

保育園の保護者会役員ということもあり、保育園の業務を ICT でサポートし、保育士さんの業務負担を軽減するシステムの研究を行っています。

画像認識による園児写真の自動分類

卒園アルバムを作成する際に大変な写真の整理を,機械学習による画像認識により自動化し,ウェブシステムとして構築

登降園管理システム

カメラを用い、登園・降園の時間記録を画像認識により自動化

- ・教育研究支援センターとして、公開講座を年2回開催しています。
- ・県内の科学関連イベントを集めた「科学啓発ポータルサイト(http://s-porta.tsc.fukui-nct.ac.jp)」 の運用を行っています。
- ・福井高専教育研究支援センター科学楽しみ隊として、丹南地区の子どもたちに科学の楽しさを伝えるイベントを行っています。

所属部門	情報・通信
研究分野	電子デバイス・電子機器

中村 孝史 技術職員 教育研究支援センター nakamura@fukui-nct.ac.jp 専門分野

情報工学

キーワード

自動化 • 安全衛生

所属学協会・研究会

日本工学教育協会

研究テーマ

【WBGT(熱中症指数)の自動計測および可視化】

安全衛生環境を構築することを目的としたグループの活動として、マイコンとセンサから各種温度を自動計測し、サーバに情報を送信する測定器の製作を行っています。主に送られた情報を基にグラフ等を表示するホームページの構築やプログラムの作成を担当しています(図 1)。またそれらの情報をより分かりやすく伝えるための可視化(見える化)も試みています(図 2)。

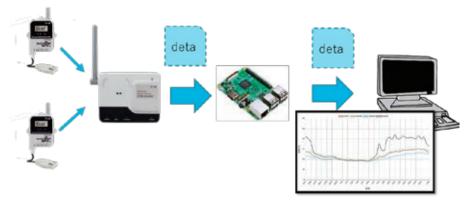


図1 マイコン等を用いたデータ計測

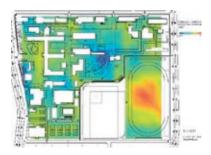


図2 温度情報の可視化

産官学連携や地域貢献の実績と提案

教育研究支援センターの公開講座「親子で作るオリジナル写真年賀状」をはじめ、専門分野を活かした公開講座や出前授業の支援も行っております。また上記の活動の一部は教育研究支援センターホームページ (http://www.tsc.fukui-nct.ac.jp/)でも公開しております。

所属部門	情報・通信
	<u></u>
研究分野	通信・ネットワーク工学

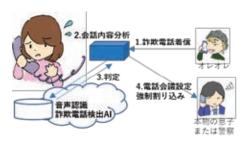
波多 浩昭 教授 電子情報工学科 hata@fukui-nct.ac.jp

専門分野

情報ネットワーク、通信ソフトウェア、

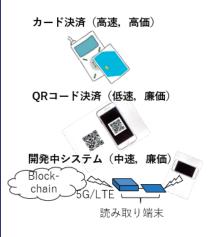
IP-VPN, プロトコル

キーワード


インターネット、企業ネットワーク、仮想ネットワーク

所属学協会・研究会

電子情報通信学会, IEEE


研究テーマ

【アクティブAI電話機の研究開発】

振り込め詐欺などの電話を使った詐欺通 話を音声認識と詐欺通話判定を行うAIを 使って検出し、被害を防止する、電話機で は会話内容をディジタル化してインター ネットを介した音声認識機能を使ってリ アルタイムでテキスト化し、さらに詐欺電 話である可能性を、人工知能を用いて判定 する. 詐欺電話の可能性が高ければ(回線 を切断するだけでは発信者側に詐欺電話 と判断したことが伝わらないため)事前に 登録されている親族もしくは捜査機関に 発信して電話会議を開設して第3者を割り 込ませる. 技術的には既存電話回線, スマ ートフォンなどのソフトフォンなどに応 用可能である. また電話機に実装すること で、通信の秘密の保護義務に抵触しない.

【ブロックチェーンを用いた中速度電子決済端末の研究】

交通系 IC カードは首都圏 のラッシュ時の乗降客改 札通過時間を考慮し高速 動作させるため、カードに バリューを持たせている. このため高セキュリ 高価 センティ を維持する端末もってで あり、JR 系であってであり、JR 系であってであり、JR 系であってで れていない地方駅は多い.

一方廉価なQRコード決済ではカメラ機能を動作させなければならず、電車やバスでの運賃決済には不向きである. 地方都市での交通系電子マネー決済方式として、バスの乗降時間を想定した中程度の速度で動作する廉価な決済方式を研究開発中である. 端末を廉価にするためにバリューをカード、スマートフォンからネットワーク側に移し、交通系以外の店舗決済、企業間取引にも拡張できるようにブロックチェーン技術を用いている. これにより、例えばバス会社は得た運賃ポイントで燃料会社と直接決済することが可能になる. 燃料会社は社員の通勤費をポイントで支払うことができる. これらの取引はすべて、ブロックチェーンネットワーク内で処理されて、カード読み取り機は不要である.

主要設備・得意とする技術

- ・TCP/IPv4 プロトコル ・IPv6 プロトコル ・電話, VoIP
- ・仮想ネットワーク (SDN)・仮想サーバ(KVM, Docker)・信号処理・ソフトウェア開発

- ・パフォーマンス低下や断続的な故障などでお困りの企業様に対するトラブルシューティング
- ・企業様において現有されているシステムのパフォーマンス測定評価
- ・企業様において開発中のシステムソフトウェアに対するソフトウェアエンジニアリングの観点からの技 術支援

所属部門	情報・通信
研究分野	電子デバイス・電子機器

堀川 隼世 講師 電気電子工学科 horikawa@fukui-nct.ac.jp

専門分野

アンテナ工学、電子デバイス

キーワード

アンテナ、中赤外光検出器、シミュレーション

所属学協会・研究会

応用物理学会. 日本物理学会

研究テーマ

【中赤外光検出器の為のアンテナに関する研究】

・遠赤外~中赤外光検出器の高感度・高速化を目指し、アンテナを用いた検出器の研究を行ってきました。

現在,遠赤外~中赤外(MIR)領域は,環境計測,分光による血糖値の測定,電波望遠鏡等への利用が期待されています。しかし、これらの領域は、光源・検出器共に技術が十分に確立されておらず、未開拓周波数と呼ばれています。そこで現在、MIR 領域に於いては、アンテナを利用した MIR 検出器の研究が行われています。但し、従来の MIR アンテナ研究では、アンテナインピーダンスの評価方法が確立されていませんでした。そこで、中赤外光を受信可能なアンテナのインピーダンス評価方法についての研究を行っています。また、中赤外光検出器の性能向上を目指し、アンテナを用いた光検出器の検討も行っています。

産官学連携や地域貢献の実績と提案

出前授業などを通すことで、工学の楽しさを伝えたいと考えています。

研究分野 情報学基礎,知能情報学	所属部門	情報・通信	
	研究分野	情報学基礎,知能情報学	

丸山 晃生 准教授 電気電子工学科 情報論理研究室 maruyama@fukui-nct.ac.jp

専門分野

記号論理学,パターン認識

キーワード

記号論理、エージェント、画像認識

所属学協会・研究会

日本ソフトウェア科学会, 日本数学会,

電子情報通信学会

研究テーマ

【 多重様相論理 】定理自動証明器の実装

日常的な論理思考を形式化した様相論理に対する定理自動証明プログラムを実装しています(図1)。特に認識論理と時間論理を融合した多重様相論理を研究対象としています。定理の真偽を自動判断することを利用して、プログラム検証分野への応用も試みています。

【 画像処理 】

パターン認識・最適解探索

画像処理と最適解探索を用いて,画像上の特定物体(顔,手指,文字など)を検出しています。また,パターン認識により,検出物体の分類にも取り組んでいます(図2)。さらに,動画像処理により,動作認識を用いたインタフェース開発も試みています。

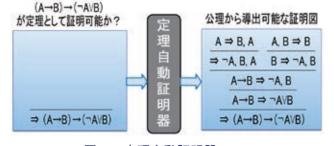


図 1 定理自動証明器

図2 画像処理を用いた文字認識

主要設備・得意とする技術

- ・日常的事象の記号論理を用いた定式化、および、定式化された記号論理に対する自動証明・自動推論プログラムの実装が可能である。その際、論理型言語prologや関数型言語OCamlにより実装しています。
- ・遺伝的アルゴリズムなどによる最適解探索やニューラルネットワークなどを用いたパターン認識などの情報 処理技術を、画像変換、画像認識、動画像処理などに応用しています。

- ・画像情報処理技術を用いたインタフェース開発
- ・越前市産業活性化プラン有識者会議委員

所属部門	素材・加工
研究分野	電子デバイス・電子機器

荒川 正和 准教授 電気電子工学科 arakawa@fukui-nct.ac.jp

専門分野

電子物性, 物理学

キーワード

トンネル現象、音情報処理、新規アクチュエータ、

工学教育

所属学協会・研究会

電子情報诵信学会

研究テーマ

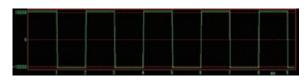
【物理シミュレーション、科学・工学教育】

- ・ 数値計算による物理現象の解明 トンネル現象、量子効果
- 理工系分野の啓蒙用教材開発(電気電子分野)主に小、中学生向け

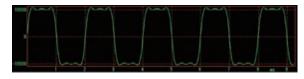
【センサ応用】

- ・ 視覚障がい者の生活支援装置の試作 障害物検知による歩行補助用装置
- ・ 陸上競技用簡易計測装置の試作 部活動における練習効率向上のための装置

【新規アクチュエータ】


人工筋肉の試作

試作した人工筋肉 (右図)



【音情報処理】

- ・ 音の周波数特性解析と特徴パラメータ抽出 楽器音, 音高の自動判定
- ・ 日本語母音の自動生成 音声データベースに依らない自動生成方法の 提案
- ・ シンセサイザの試作 口笛・リコーダー用シンセサイザ

フィルタ処理すると↓

音声波形処理の例

主要設備・得意とする技術

数値解析、センサ応用、音楽・音響関係

産官学連携や地域貢献の実績と提案

科学・工学教育(特に導入教育)に興味があり、これまでに

公開講座「やってみようソーラーカー手作り教室 (小・中学生)」「電気実験の自由研究 (中学生)」 出前授業「発光ダイオードを用いた工作教室 (中学校)」

などを行いました。アクセサリやおもちゃの製作と電子工作や電子回路を融合させたり、それらにまつわる 実験テーマを開発し実践すること等を通じて、電気・電子工学に興味を持ってもらえるような教材の提案を していきたいと考えています。

また音楽好きが高じ、過去のノウハウを活かして音楽・音響関係の研究テーマにも取り組んでいます。 最近では、福祉分野に興味を持つきっかけを得て、電気電子工学をそれらの分野で役立つ装置等の開発に 結び付けたいと考えています。

所属部門	素材・加工
研究分野	トライボロジー・材料加工

加藤 寛敬 教授 機械工学科 機能材料・トライボロジー研究室 hkato@fukui-nct.ac.jp

専門分野

トライボロジー、金属材料、粉末冶金、機械工作法キーワード

摩耗, 微細組織材料, 電子顕微鏡

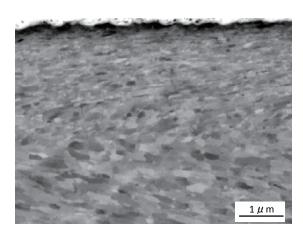
所属学協会・研究会

日本機械学会, 日本トライボロジー学会,

日本金属学会

研究テーマ

【超微細組織材料の摩耗特性】


超強加工などにより作成した超微細組織材料は、 合金元素に頼らずに高強度を示すという新しい 発想に基づいた画期的材料であるために、環境資源・エネルギー問題の観点から次世代の構造材料 候補として近年注目を集めています。このバルクナノメタルの摩擦摩耗特性を評価しています。

雰囲気制御摩擦摩耗試験機

【摩擦表層のトライボメタラジー】

摩擦摩耗低減は環境問題における最重要課題の一つです。摩擦摩耗低減を最終目標として、トライボロジー(摩擦学)とメタラジー(金属学)を融合した最先端の新しい研究に取り組んでいます。特に、摩擦摩耗の影響を受けた材料表面は、組織が微細化・ナノ結晶化していると考えられ、耐摩耗性にも優れていると期待されます。

摩擦表層のSEMによる反射電子像

主要設備・得意とする技術

- ・雰囲気制御摩擦摩耗試験機を保有し、幅広い先端材料の各種雰囲気(高真空、Arガス中)での摩擦摩耗特性の評価が可能です。
- ・高分解能で試料表面観察が可能な走査型電子顕微鏡を用いた材料研究を実施しています。

- ・走査電子顕微鏡(SEM)によるミクロな観察
- ・機械工作・金属加工に関する講義・実習

所属部門	素材・加工
研究分野	電子デバイス・電子機器

久保 杏奈 技術職員 教育研究支援センター kubo@fukui-nct.ac.jp

専門分野

電気,情報系

キーワード

ナイロン人工筋肉,アクチュエータ,炭素繊維

所属学協会・研究会

日本人間工学会

研究テーマ

【ナイロン製人工筋肉に関する研究】

釣り糸や縫い糸として使用されるナイロンをスプリング構造にし、あらかじめ荷重をかけて伸長させた 状態のものに熱を加えると、元の長さまで収縮することができます。加熱による収縮動作と放熱による伸 長動作を繰り返し行うことで、人工筋肉としての動作を再現しています。

ナイロン製人工筋肉の加熱には、炭素繊維を通電させた際に起こる発熱現象を利用しています。また、 ナイロン製人工筋肉の実用化に向けて、マイコンを用いた伸縮動作における耐久性試験装置システムを製 作し、作製したサンプルの耐久性試験を行っています。

図1 自作したナイロン人工筋肉

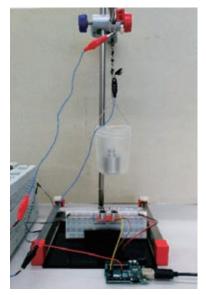


図2 伸縮動作における耐久性試験装置

産官学連携や地域貢献の実績と提案

▷教育研究支援センター公開講座

「ロボットを動かすプログラミング体験」

▷電気電子工学科公開講座・出前授業

「電気の力でパンを作ろう」、「手作りスピーカー」

所属部門	素材・加工
研究分野	電子・電気材料工学

西城 理志 助教 電気電子工学科 satsaijo@fukui-nct.ac.jp

専門分野

電子工学, 物性物理学

キーワード

太陽電池、ナノ粒子

所属学協会・研究会

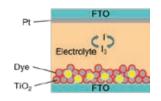
応用物理学会、日本シミュレーション&ゲーミング学会

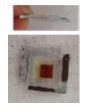
研究テーマ

【金属ナノ粒子の太陽電池応用】

金属ナノ粒子を導入することで、太陽電池の効率 効率を目指している。

(a) 表面に配置*

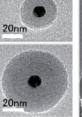


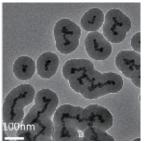

- ◆ 光散乱
- ➡ ナノ構造による光散乱で、 光路長が伸び吸光度向上

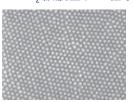
▶ プラズモン吸収 ➡ キャリア発生源近傍で、 官場を利用したキャリア 励起の促進

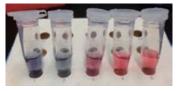
効率向上のメカニズム

色素増感太陽電池の構造 色素増感太陽電池の外観


【金属ナノ粒子】


デバイス応用を目指し、下図のような種々の金属 ナノ粒子の作製を行っている。


20nm -



SiO₂被膜金ナノ粒子 チェイン状の金ナノ粒子

基板上に配置した 金ナノ粒子

金ナノ粒子溶液

主要設備・得意とする技術

マルチチャンネル分光器

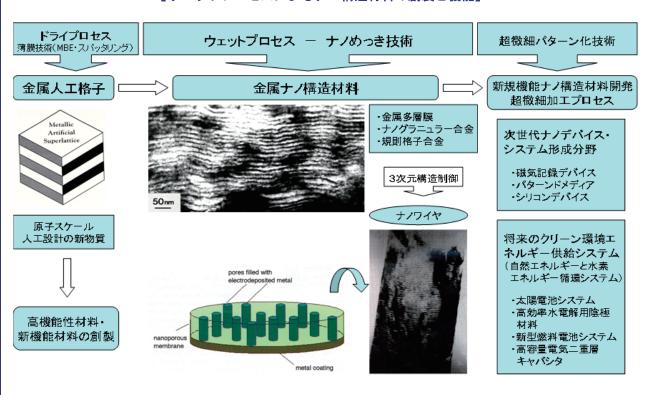
液体及び基板などに対して、様々な波長の光の透過吸収測定が可能

ソーラーシミュレータ

人工太陽灯により、太陽電池の I-V 特性の測定が可能

遠心分離機

産官学連携や地域貢献の実績と提案


電気パンの作製

色素増感太陽電池の作製講習会

所属部門研究分野	素材・加工構造・機能材料	専門分野 材料化学, 金属表面化学
	常光 幸美 教授 物質工学科 jyoko@fukui-nct.ac.jp	キーワード ウェットプロセス、電気化学プロセス 所属学協会・研究会 The Electrochemical Society Active Member, (公社)日本金属学会,(公社)電気化学会, (一社)表面技術協会

研究テーマ

【ウェットプロセスによるナノ構造材料の創製と機能】

産官学連携や地域貢献の実績と提案

【産官学連携共同研究】

- ・新規めっきプロセスによる垂直磁気記録媒体用軟磁性裏打層の開発 (信越化学工業(株)磁性材料研究所・福井工業技術センター)
- ・ウェットプロセスによるシリコンインターポーザ形成技術の開発 ((国研)産業技術総合研究所・(公財)若狭湾エネルギー研究センター)

所属部門	素材・加工
研究分野	無機材料・物性

高橋 奨 助教 機械工学科 takahashi@fukui-nct.ac.j

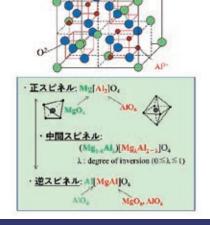
専門分野

材料工学, 誘電体材料, 複合材料

キーワード

結晶構造・組成制御、機能性セラミックス材料

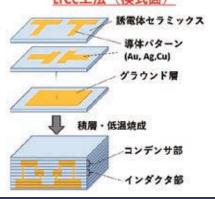
所属学協会・研究会


日本セラミックス協会

研究テーマ

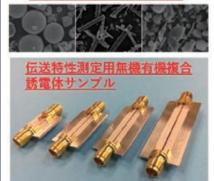
【結晶構造制御による物性改善】

セラミックスの結晶構造を設計・制御することで、誘電特性、電気特性などセラミックス物性の最適化、新規セラミックスの材料開発を行っています。また、それらの物性と結晶構造との相関性について研究を行っています。


MgAl₂O₄スピネルの結晶構造

【LTCCセラミックス】

高周波モジュールや IC パッケージ用基板は、配線導体とセラミックス基板を 900℃以下の低温で同時に焼成して作られる「低温同時焼成セラミックス (LTCC)」が用いられます。本研究では、高 Q (低い誘電損失)を有する LTCC 基板材料の作製に向けた焼結助剤の適用検討とその高周波誘電特性評価を行っています。


LTCC工法(模式図)

【無機有機複合誘電体材料】

ミリ波帯領域の高周波通信デバイスにおいて、無機材料(セラミックス)と有機材料が注目されています。形態や結晶性を制御したときで、ミリ波帯領域で利用可能な誘電・熱的特性を兼ね備えた新規高周波用複合誘電体材料の開発を行っています。

合成したセラミックス粒子

主要設備・得意とする技術

1. 高周波誘電特性評価:空洞共振器法, Hakki-Coleman法

2. セラミックス材料評価:電気伝導率,熱伝導率,表面観察,組成分析, X線回折

3. セラミックス粉体合成:異方性粒子,高結晶性粒子,中空粒子

産官学連携や地域貢献の実績と提案

・ミリ波帯への活用に向けた無機有機複合誘電体材料の開発とデバイス実装。

所属部門	素材・加工
研究分野	有機化学、合成化学

津田 良弘 教授 物質工学科 tsuda@fukui-nct.ac.jp

専門分野

触媒化学

キーワード

金属ポルフィリン錯体, 金属サレン錯体, 酸化触媒 所属学協会・研究会

日本化学会, 触媒学会, 電気化学会

研究テーマ

【金属ポルフィリン錯体によるシトクロムP-450モデル反応に関する研究】

動物の肝臓中に存在する一酸素原子添加酵素(シトクロムP-450)の酵素活性を解明する目的で、Mnポルフィリン錯体を用いたモデル系により電子伝達系、酸素分子の酸素原子への開裂、軸配位子の役割など詳細に検討している。

【金属サレン錯体を触媒に用いた酸化反応の基礎研究】

有機配位子の設計が容易である金属サレン錯体を 触媒に用いた有機化合物の酸化反応に関する基礎研 究を行っている。

主要設備・得意とする技術

ガスクロマトグラフ, 高速液体クロマトグラフ, ポテンシオスタット, ファンクションジェネレータ。 有機化合物の簡易分析及び電気化学的測定。

産官学連携や地域貢献の実績と提案

出前授業(液体窒素を用いた超低温の世界、スライム時計の作成)

所属部門	素材・加工
研究分野	無機材料・物性

西野 純一 准教授 物質工学科 物質科学研究室 nishino@fukui-nct.ac.jp

専門分野

無機化学, 電気化学, 無機材料科学

キーワード

薄膜, 化学気相析出(CVD)法, ナノ材料, 構造規制 所属学協会・研究会

日本セラミックス協会、電気化学会、表面技術協会

研究テーマ

【近接気化型CVD法による薄膜の合成】

キャリヤーガスを用いない近接気化型化学機相 析出(CVD)法の研究をしています。図1にビス 2,4-ペンタンジオナト亜鉛を原料としてこの合 成法によりSi単結晶基板上に150℃の低温で合 成した酸化亜鉛膜を示します。

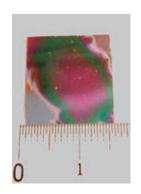
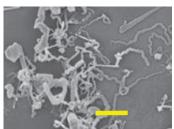



Fig. 1 基板温度150℃で合成したZn0膜

【構造規制材料の合成】

構造を規制したナノ銀の合成をしています。条件を選ぶことによって高校の化学の教科書に載っているデンドライト(樹枝)状の銀樹でない銀が合成できます。図2にアクリル基板上に合成したひも状の銀,図3にアクリル基板上に合成した部分的に配列した銀ロッドをそれぞれ示します。

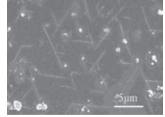


Fig. 2 ひも状の銀

Fig. 3 部分的に配列した 銀ロッド

主要設備・得意とする技術

XRRによる薄膜の膜厚、密度および粗さ測定

- ・公開講座2008「化学はじめの一歩」(福井高専)
- 公開講座2010-2013「オリジナル栞を作ろう」(福井高専)
- ・サイエンススクエア2010「オリジナルの「しおり」を作ろう」(国立科学博物館)

所属部門	素材・加工/地域・文化
研究分野	機能物性化学関連

長谷川 智晴 准教授 一般科目教室(自然科学系) hasegawa@fukui-nct.ac.jp

専門分野

ガラス材料・光物性

キーワード

ガラス・セラミックス・光吸収・屈折率・光ファイバー 所属学協会・研究会

Optical Society of America, 日本物理学会, 応用物理学会

研究テーマ

多成分系ガラス材料の組成設計から物性測定まで一貫して幅広く行っています。ガラスは成分の調整で、様々な物性をコントロールすることができます。また、ガラスは板、球、ファイバーなど様々な形状に加工できることから、幅広い分野で応用されています。ガラスを熱処理すると、微小な結晶が数多く生成したセラミックスになります。成長した結晶の性質を上手に用いると、ガラスの物性を飛躍的に向上させることも可能になります。

私の研究では、ガラス中にどのように結晶が成長するかを詳細に調べ、その過程で物性値がどのように変化するかを観察しています。具体的には、ホウ酸塩系ガラスの結晶化過程で、誘電率がどのように変化するかを調べています。そのほかに、可視域での光学特性の変化も調査しています。光の波長より十分小さい結晶を数多く生成することができれば、「安価で作りやすい」「高屈折率・高誘電率」のガラスが実現できるものと期待しています。(図は、当研究室で作製した融液状態のガラスとガラス試料の写真。)

主要設備・得意とする技術

【主要設備】

ガラス溶解用電気炉(1100°C), 熱処理用小型電気炉, 誘電分散測定用 LCR メーター, ガラス研磨機。

【得意とする技術】

各種分光測定, XRD 測定。

産官学連携や地域貢献の実績と提案

公開講座や展示会でのデモ実験等を毎年行っています。

所属部門	素材・加工
研究分野	加工学

藤田 祐介 技術専門職員 教育研究支援センター yusuke_f@fukui-nct.ac.jp

専門分野

加工学,機械設計

キーワード

機械加工, 機械設計, 安全

所属学協会・研究会

日本機械学会

研究テーマ

【機械加工における安全】

職業訓練指導員(機械系)の免許を保有し、また、 民間企業の加工現場での経験を活かし、工作機械を使 用した加工をより良く学生に伝える研究を重点的に行っています。その中には、加工の様子を直接見ること ができない状況における観察装置の開発や、観察手法 の検討なども含まれています。

●日頃の活動内容

ものづくりを行う際に起こりうる事故を調査し、それらの原因及び対策をまとめ、安全にものづくりを行う環境作りを考案しています。それらを元に機械加工

について素人である学生に対し、工作機械を扱う際の危険なポイントを、実例を取り上げて指導しています。

産官学連携や地域貢献の実績と提案

【公開講座・出前授業】

親子を対象とした公開講座や出前授業などに参画し、簡単な実験やおもちゃ作りを通して参加者の科学への興味関心を育む活動を行っています。

• 令和元年度 4件

【地域貢献】

丹南地域の熱中症予防の指標として、本校HPで公開されているWGBTの測定機器の製作を行いました。製作を行う際には、気象台に準ずる測定ができるように留意しています。

刀馬叩丁	来何"加工	
研究分野	機能物性化学.	高分子化学

表材。加工

記屋如田

古谷 昌大 准教授 物質工学科 有機·高分子材料研究室 furutani@fukui-nct.ac.jp

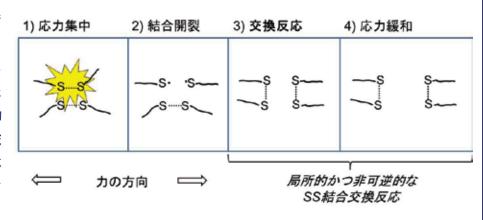
専門分野

有機材料化学, 高分子化学

キーワード

接着、光(UV)硬化、ジスルフィド結合

所属学協会・研究会


高分子学会, 材料技術研究協会, 日本化学会, 日本接着学会

研究テーマ

【ジスルフィド結合が組み込まれた機能性ポリマー材料の開発】

ジスルフィド結合(SS結合)は、150°C以下という比較的温和な温度条件下で、結合交換反応を起こすことが知られています。そこで、ポリマー材料中にSS結合を組込み、**易解体性接着材料**や**硬化収縮低減材料**の開発を進めています。これまでに、SS結合を分子内に持つジアミン、ビスエポキシ樹脂、ジアクリラート等を設計・合成し、アニオン∪∨硬化系やラジカル∪∨硬化系に応用しました。

ある程度加熱した状態で外部応力が加わったとき、内部応力が発生したいるとき、応力集中 局所ないる話合が開裂し、局所のかつ非可逆的ないまることを表で、ないます(右図)。

主要設備・得意とする技術

- 卓上引張り試験機
 - 粘接着試料のせん断応力等を測定するための装置です。
- · 光量計(i線(波長365 nm)用)
 - 特定の波長のUV光照度を計測する計器です。簡易的な365 nm光照射用ランプも併せて所持しています。

産官学連携や地域貢献の実績と提案

2020年4月より、現職に着任しました。

まずは、公開講座や出前授業等に携わっていきたいと考えています。

所属部門 素材・加工

研究分野 無機材料・物性,科学教育

堀井 直宏 技術専門員 教育研究支援センター naop@fukui-nct.ac.jp

専門分野

非晶質材料,科学教育,サイエンスリテラシー |キーワード|

シリカガラス、石英、失透、結晶化、ガラス、 失透抑制

所属学協会・研究会

応用物理学会, 日本セラミックス協会, 照明学会, 応用物理教育分科会

研究テーマ

【ガラスの失透現象に関する基礎研究】

ガラスと不純物の接触,特にアルカリ金属などを含んだ塩との接触によって,温度上昇時(700°C~)に失透というガラスの劣化現象が発生します。これは,ガラス内に結晶核が生成し,非晶質のガラスが結晶に変化することで生じる現象です。窓ガラスなどの素材には,ガラスの加工性を上げるためにNaやCaが含まれており,既に不純物が含まれた状態であるため,容易に失透が起こります。陶芸における釉薬や粘土にもガラスが含まれるものが多く,焼成の段階で失透に起因した割れや模様が生じる場合があります。

私達が目にするガラスの中でも、シリカガラス(石英ガラス)は、高純度なSiO₂によって形成されたガラス材料です。シリカガラスは、ガラスの王様と呼ばれるように、電気絶縁性、耐薬品性、耐熱性、優れた光透過性等、産業用材料の優等生として広い応用範囲を持っています。しかし、不純物が存在する環境では失透による性能の劣化が問題となります。

筆者らは、純粋なSiO₂で出来たシリカガラスと不純物を接触させて、シリカガラスが失透するメカニズムの解明を目指しています。また、シリカガラスの失透抑制方法についての研究も行っています。

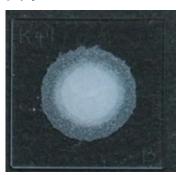


図1 NaClによって同心円状に失透した シリカガラス

主要設備・得意とする技術

失透によるガラスの劣化機構についての技術相談が可能です。

走査型電子顕微鏡(SEM), エネルギー分散型X線分光分析(EDS・EDX), X線回折(XRD), 自記分光光度計などを用いた材料分析を行いながら, 失透メカニズムについての研究を行っています。失透抑制技術」として, シリカガラスにハロゲン添加を行うことで, 失透の内部への進行を抑制できることを見出しています。

1. 【特許第4929457号 シリカガラス材料】

産官学連携や地域貢献の実績と提案

H23~25:公開講座 "親子科学教室「科学は身近にあふれてる。さあ科学のとびらをあけましょう!」" H24. 25:公開講座 "「親子で作るはじめてのオリジナル写真年賀状」"

他:共同研究, 自転車人力発電機の製作, 理科工作教室等の科学啓発活動について随時相談可能です。

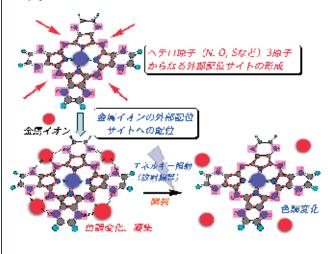
所属部門	素材・加工
研究分野	機能物質化学

松井 栄樹 教授 物質工学科 分子機能化学研究室 eiki@fukui-nct.ac.jp

専門分野

生物有機化学,機能材料化学,合成化学

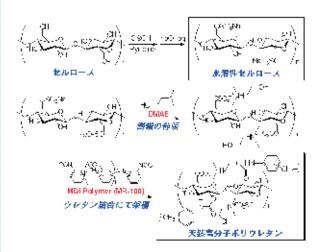
キーワード


機能性色素,天然高分子材料,金属錯体,生体分子 所属学協会·研究会

日本化学会, 日本薬学会, 電気化学会, 高分子学会

研究テーマ

【修飾Pc色素を用いた金属センサー、回収剤の開発】


通常のフタロシアニン(Pc)とは異なり、外部金属配位サイトを有するPcを設計し合成を行っています。各種金属イオンを添加した場合、色調変化や凝集沈殿が起こり、センサー、凝集剤として利用可能です。

【水溶性セルロース基材のポリウレタン樹脂合成】

天然高分子であり溶剤に不溶のセルロースから水溶性セルロース誘導体へと変換後、極性基と相互作用する側鎖を導入し MDI ポリマーと反応させます。

水発泡による天然高分子を基材とした、環境負荷の少ないポリウレタン樹脂の合成を行っています。

主要設備・得意とする技術

- ・超伝導核磁気共鳴装置 NMR (400MHz) 及び顕微赤外吸収スペクトル装置 IR の維持管理
- ・蛍光スペクトル装置 FL、紫外可視吸収スペクトル装置 UV、円偏光二色性スペクトル装置 CD の維持管理
- ・上記の装置により、有機分子、色素、金属錯体、天然高分子、生体分子の合成と機器分析、 分子が有する機能性の評価を行っています。

- ・レンズの光学特性評価
- 天然資源材料の有効活用、溶解、樹脂化
- 各種有機化合物の合成,構造決定
- 色素分子の特性,機能性評価

所属部門	素材・加工
研究分野	物性 II, ナノマイクロシス テム

松浦 徹 准教授 電気電子工学科 t-matsuura@fukui-nct.ac.jp

専門分野

凝縮系物理学, 電子物性

所属学協会・研究会

キーワード

電気輸送計測,MEMS/NEMS,低温実験,超伝導・密度波

日本物理学会, 応用物理学会

研究テーマ

【電子結晶を用いた微小機械振動子素子の研究】

これまで、"電荷密度波(CDW)"状態をしめす TaS_3 、 NbS_3 などを用いて微小な電気・機械振動素子(MEMS または NEMS と呼ばれる)の研究を行ってきました。

CDW は、異方的な電気伝導体特有のフェルミ面の不安定性(パイエルス不安定性)に起因して、電子密度とフォノンがフェルミ波数の2倍の波数で周波数0の疎密波を作る巨視的量子状態です。CDW状態では、電子密度が超格子構造を組んだ電子結晶を作ります。電子結晶は、通常の固体結晶と同じく弾性や剛性が生じるため、電子物性と機械特性の間に強い相互作用を持っていると期待されます。

相互作用がより強い物質系を見つけることができれば、MEMS/NEMS を単純にかつ小型化・集積化でき、量子力学・熱力学などの基礎物理の実験や、生体・医療への応用が考えられます。これまでに、図に示すような CDW ナノ振動子を作成し、電子物性・機械特性間の相互作用の測定を行っています。

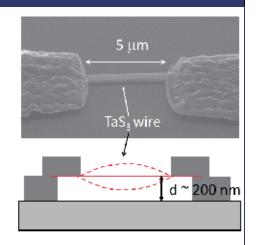


図. 作成した両端支持梁型 CDW ナ ノ共振子の走査電子顕微鏡像と模 式図

主要設備・得意とする技術

- ・ネットワークアナライザー
- ・高周波プリアンプ
- 微小電流測定
- 低温技術

- 市民講座
- ・企業の依頼研究(電子素子の温度特性測定・評価)

所属部門	素材・加工
研究分野	生産工学・加工学

村中 貴幸 教授 機械工学科 塑性加工研究室 muranaka@fukui-nct.ac.jp

専門分野

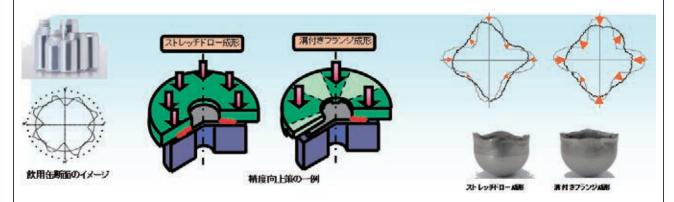
塑性加工学, 材料力学

キーワード

板成形, 焼付き, チタン

所属学協会・研究会

日本機械学会, 日本塑性加工学会


研究テーマ

【塑性加工製品の高付加価値化】

● 容器製品の精度向上策の開発

密閉性、耐圧性の向上を目指したより真円に近い容器の成形

⇒金型の精度に依存しない変形時の材料流動を活用

- Ti成形の焼付き防止策の開発
 - 工業用チタンの画期的プレス成形技術
 - ⇒酸化皮膜を用いない新しい焼付き防止策の開発

主要設備・得意とする技術

機械工学科棟 1 Fに設置された 500kN 油圧式万能試験機を管理しています。本年度 300kN ギア式の精密万能 試験機が導入される予定です。板、丸棒など試験片の形状を問わず引張、圧縮、曲げの評価試験が実施可能 です。

- ・チタン製眼鏡枠のプレス成型法の開発
- 均一肉厚容器の成型法開発
- ・先端マテリアル創成・加工技術研究会メンバー
- ・中小企業産業大学校「機械工学の基礎」講師

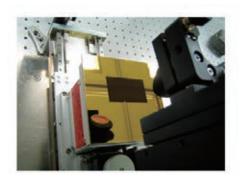
所属部門	素材・加工
研究分野	ナノ材料工学

安丸 尚樹 嘱託教授 機械工学科 材料工学研究室 yasuma@fukui-nct.ac.jp

専門分野

材料工学、表面工学、レーザー加工

キーワード


表面改質、フェムト秒レーザー、ナノ構造、硬質薄膜 所属学協会・研究会

日本金属学会,日本機械学会,レーザー学会,日本材料学会,日本応用物理学会,表面技術協会,日本熱処理技術協会,日本工学教育協会

研究テーマ

【フェムト秒レーザーによるナノ加工と次世代トライボロジー制御技術】

● 当研究室で見出したフェムト秒レーザーによるDLCやTiN等の硬質薄膜や金属表面への周期的ナノ構造加工技術(形状・サイズ等を制御加工)とトライボロジー制御技術への応用

フェムト秒レーザーによるTiN薄膜の加工風景

直線偏光

円偏光

1 # m 20.0kV ×10.0k

TiN薄膜に形成されたナノ構造の例

20.0kV X30.0K 800n

主要設備・得意とする技術

イオンプレーティング装置、走査型プローブ顕微鏡(SPM)、マイクロスコープ顕微鏡、摩擦摩耗試験機、 走査電子顕微鏡(SEM)、ナノメカニカル試験装置、電気化学測定システム 薄膜作製、表面改質、フェムト秒レーザー加工技術、SEM等による表面分析技術

産官学連携や地域貢献の実績と提案

県内の企業・産業支援センター・大学等と連携し、フェムト秒レーザー援用ナノ構造加工技術について、JSTの地域結集型共同研究事業(平成12-17年度)・育成研究(平成18-21年度)・A-STEP(平成23年度)や、科学研究費(平成14-22、24-29年度)に採択されています。今後も、表面改質技術やレーザー微細加工技術に関して共同研究を実施したいと考えています。なお、ロボコン用ロボットの実演活動を約20年間実施しましたが、最近は3Dプリンターによる製作活動を行なっています。

所属部門	素材・加工
研究分野	生産工学・加工学

山田 健太郎 技術職員 教育研究支援センター k-yamada@fukui-nct.ac.jp

専門分野

機械設計,加工学

キーワード

機械設計,機械加工

研究テーマ

【機械工作実習における機械加工】

初めて機械を使用する学生が多いため、初心者に分かりやすく機械操作の説明や機械の構造などを説明しています。世の中にはNC機械のように自動で加工する機械も多くありますが、やはり機械を手動で操作してみて、実際に「もの」を加工する感触を体験したり感じたりすることは、非常に大事だと思います。このような体験が多くできるような実習方法を模索、検討しています。

また、より直感的に分かりやすくするため、視覚に訴えるように写真、図などを多く利用した資料等を作成しています。初心者でも理解できるように、工作機械の構造や操作方法などの資料を工作機械メーカーの取扱説明書などを参考にして作成しています。

産官学連携や地域貢献の実績と提案

H28年度 公開講座 7月 「小中学生夏休み科学教室」 H27年度 公開講座 7月 「小中学生夏休み科学教室」

H27年度 公開講座 11月 「親子で作るオリジナル写真年賀状」

研究分野 ナノ材料化学	
所属部門素材・加工	

山本 裕之 教授 一般科目教室(自然科学系) hiruyoki@fukui-nct.ac.jp

専門分野

セルロース科学

キーワード

セルロース、紙、構造、ナノファイバー

所属学協会・研究会

セルロース学会、繊維学会

研究テーマ

【研究テーマ】

セルロース繊維は市販されている高性能繊維であるケブラーやベクトラン繊維と同じように極めて高い弾性率と強度を有しており、複合材料の繊維や環境調和型材料として十分期待できる素材である。しかし、セルロースはその分子鎖の凝集性が極めて強く、特殊な溶媒、あるいは特殊な条件下でしか溶解しないことや、水を吸収しやすい分子特性を持つため、応用範囲が制限されてきた。この問題を解決する一つの手段として、セルロースのナノファイバー化がある。そこで、安価で実用的なセルロース材料であるパルプ、綿などを、効率的にナノファイバー化する技術を確立し、このセルロースナノファイバーを用い、バイオマス由来の高機能性複合材料(グリーンコッポジット)や、疎水性セルロースフィルムなどを開発することが研究テーマである。

所属部門	素材・加工
研究分野	有機化学, グリーン・環境 科学

山脇 夢彦 助教 物質工学科 有機光化学研究室 yamawaki@fukui-nct.ac.jp

専門分野

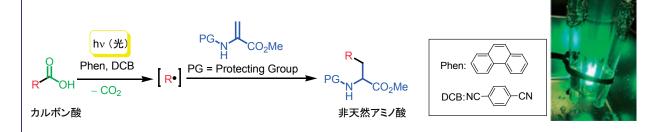
有機化学, 光化学, 医薬品合成

キーワード

反応有機化学, 有機合成化学, 有機光化学, ファイン ケミカル

所属学協会・研究会

日本化学会


研究テーマ

【光誘起電子移動を利用した非天然アミノ酸の合成】

非天然アミノ酸はタンパク質を構成する以外のアミノ酸で, 創薬研究での重要性が高まっています。最近では, ホウ素中性子捕捉療法 (BNCT) というがん治療の薬として, 非天然アミノ酸の使用報告があります。

しかし、そのような非天然アミノ酸の合成は、熱や強い酸、塩基を必要とするため、それらに耐性を持たない官能基を含む、複雑な骨格を有する非天然アミノ酸合成は容易ではありません。一方で、Ir や Ru、福住触媒を用いた光反応での合成も報告されていますが、これらの触媒は高価で、廃棄が困難である問題があります。

我々の研究室では、カルボン酸を基質とし、フェナントレン (Phen) やジシアノベンゼン (DCB) のような 安価な有機光触媒を用いて、光誘起電子移動による脱炭酸反応を経由して非天然アミノ酸の合成に成功しま した。この反応は金属を用いないためクリーンであり、この方法を用いることで非天然アミノ酸のライブラリーを増やすことが可能であると考えています。

主要設備・得意とする技術

【得意とする技術】

- 有機化合物の合成
- 光反応
- ・医薬品合成に関すること

産官学連携や地域貢献の実績と提案

【公開講座・出前授業】

・ご希望があれば、有機化学、光反応、医薬品合成についてお話しさせていただきます。

所属部門	計測・制御
研究分野	身体教育学

青木 宏樹 准教授 一般科目教室(自然科学系) aoki@fukui-nct.ac.jp

専門分野

測定評価, 発育発達, 体育科教育

キーワード

体力測定、子ども、運動遊び

所属学協会・研究会

日本体育学会, 日本体力医学会, 日本教育医学会, 日本 教科教育学会

研究テーマ

1. 測定と評価

敏捷性、平衡性を評価する新規テ ストの開発を行っています。

また、野球選手のパフォーマンス と筋パワーの関係について研究を行 っています。

発育発達

主に、幼児期、児童期及び 青年期の体力(敏捷性やパワ | る研究を行っています。 一)の発達について研究を行 っています。

体育科教育

小学校の体育授業づくりに関す

また, 中学生や高校生の考える体 育授業について研究を行っていま す。

主要設備・得意とする技術

投球速度やバットスイング速度等を測定することが可能です。 疾走能力と関連が高い最大無酸素パワーの測定が可能です。

産官学連携や地域貢献の実績と提案

【公開講座·出前授業】

・野球選手を対象とした体力測定を公開講座で行っています。

【野球教室】

幼稚園や保育園等でご希望があれば野球教室を行います。

所属部門	計測・制御
研究分野	知能機械学・機械システム

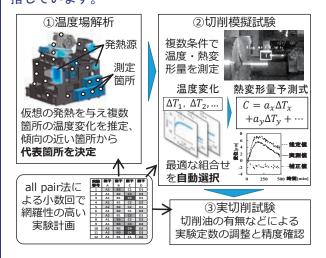
伊勢 大成 講師 機械工学科 t-ise@fukui-nct.ac.jp

専門分野

センサエ学、品質工学

キーワード

インテリジェントタイヤ、パラメータ設計、機能性評価 所属学協会・研究会


日本機械学会, 品質工学会, 北陸品質工学研究会

研究テーマ

【NC旋盤の熱変形補正システムの開発】

工作機械の熱変形対策のため、少数箇所の温度測 定値から熱変形を予測し、熱変形誤差を補正する方 法について研究しています。

様々な条件に対応可能な熱変形補正システムを、 経験によらず、低コストで迅速に構築可能とするために、熱変形解析、実験計画を利用した少数回の試験によって熱変形予測式を導出する手法の開発を目指しています。

【自律移動ロボットの品質工学による評価】

ロボット掃除機に代表される自律移動ロボットが普及しつつありますが、その性能について定量的な指標がなく、購入時に適切に比較・判断ができません。また、人がいない状態で想定外の動作をして事故につながる危険もあります。

本テーマでは、品質工学を活用し、実際の使用条件を実験条件に取り入れた機能性評価を行い、自律移動ロボットのロバスト性を定量化するための評価方法を検討します。

主要設備・得意とする技術

●得意とする技術:

品質工学を活用した効率的な実験計画の立案および統計的処理による結果分析

産官学連携や地域貢献の実績と提案

●実績:

北陸品質工学研究会において、北陸3県の企業・研究機関と技術開発の議論を行っています。

●提案:

品質工学に関する技術相談、生産工程の分析・改善

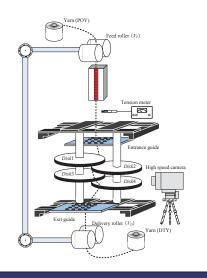
所属部門	計測・制御
研究分野	機械力学・制御

金田 直人 准教授 機械工学科 機構設計研究室 kaneda@fukui-nct.ac.jp

専門分野

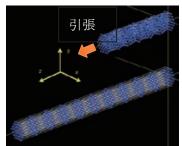
機械設計法,機構学

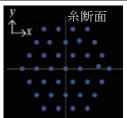
キーワード


繊維、機構設計、画像処理、数値計算、シーケンス制御 所属学協会・研究会

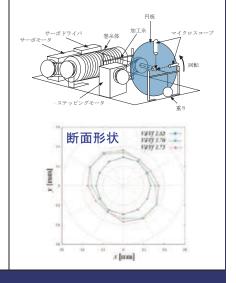
日本機械学会, 日本繊維機械学会

研究テーマ


【糸の加工メカニズムの研究】 ~実験・シミュレーション~


- 糸の接触状態・糸張力の観察
- 糸経路・糸張力のモデリング (例)ディスクフリクション

【フィラメント糸のモデリング】 ~シミュレーション~


- 引張, 圧縮, 曲げ等を考慮
- 粘弾性を考慮
- フィラメント糸の挙動確認

【糸形状の評価システムの開発】 ~実験~

- 見かけ糸太さを観察
- 糸の断面形状を把握
- 加工糸の捲縮特性の評価

主要設備・得意とする技術

【主要設備:機械工学科棟2階 機械工学実験室7】

- 仮撚加工機, 丸編機, 万能試験機, 高速度カメラ, 熱画像カメラ, FFTアナライザ, PLC
- ▶ 衣服等に用いられている仮燃加工糸を生産し、糸形状の評価や丸編機による試料を作成可能。
- ▶ シーケンス制御,画像処理等を用いて様々な評価に必要なインタフェースを開発。

産官学連携や地域貢献の実績と提案

【地域貢献】

公開授業:さわって学ぶ!簡単な制御教室(R元年度~)

出前授業: H27年度~R元年度 5件(過去5年実績)

【学会活動等】

日本繊維機械学会:ジャーナル編集委員,北陸支部評議委員

【共同研究等】

繊維機械における加工中の糸状態を把握する評価システムの構築(H25年度~継続中)

所属部門	計測・制御
研究分野	制御・ロボティクス

亀山 建太郎 准教授機械工学科人間機械システム研究室k_kame@fukui-nct.ac.jp

専門分野

制御工学、ロボット工学

キーワード

制御、モデリング、システム同定、信号処理、移動ロボット、農工連携

所属学協会・研究会

システム制御情報学会、計測自動制御学会、日本ロボット学会、日本機械学会

研究テーマ

【水田用小型ロボットの研究開発】

本テーマでは、水田を自律走行する小型ロボットの研究開発を行っています。

ロボットは、チェーンのけん引による除草を主目的としていますが、その他にも、水田環境の計測や、施肥への利用についても視野に入れた、水田用移動プラットフォームとしての開発を目指しています。

【移動体の衝突・座礁検出アルゴ リズムに関する研究】

本テーマでは、除草ロボットなどの小型移動体の移動履歴や加速度データを計測することにより、衝突・座礁の兆しを検出し、回避行動をとらせることを目的として、カルマンフィルターを応用した座礁検出アルゴリズムを開発しています。

本テーマで開発しているアルゴリズムは、座礁検出だけではなく、移動体の位置推定や、機器の 故障検出などにも応用可能なものです。

【部分空間法に基づく未知シ ステムのモデル構築・制御】

本テーマでは、動特性が未知 なシステムのモデルを、入出力 データに基づいて決定する方 法について研究をしています。

具体的には、化学プラントや機械システムに振動などの入力を与え、出力を計測して処理することにより、数学モデルを導出します。

本手法で得たモデルは、制 御、故障検出、動特性解析など に利用することができます。

主要設備・得意とする技術

- ・ 計測データに基づく故障検出や、移動体の位置推定・衝突検出に関する研究、および、制御・信号処理 技術のロボティクスへの応用について研究しています。
- ・ 小型機器の製作に利用可能な、3Dプリンタ(KEYENCE AGILISTA-3100)、カラーハンディ3Dスキャナ(Artec EVA)、3Dスキャナ(Roland LPX-600RE)、基板加工機((株)ミッツ Auto Lab W)、レーザー加工機(Epilog Mini 24) を管理しています。

- ・ 越前市中学ロボコンの開催協力
- ・ 「工業技術を利用した次世代農業研究会(福井県)」に参加し、水田用除草ロボットの研究開発を行っています。また、鯖江市のメーカーとの共同開発、営農企業の協力による実地試験等を行っており、 農業などへの計測制御技術・ロボット技術の応用に関する研究を推進したいと考えています。

所属部門	計測・制御/素材・加工
研究分野	機械工学

北川 浩和 技術長 教育研究支援センター 機械実習工場 kitagawa@fukui-nct.ac.jp

専門分野

加工学, 知能機械学

キーワード

機械加工, 汎用工作機械, 電子工作, 電気工事 組込み型マイコン

研究テーマ

【機械加工. 実技指導】

やすい、座学やテキストでは学習「術や組込み型マイコン、プログ できない経験的知識(暗黙知)の「ラミングを含む電子工作的な弱」 習得に重点を置いた実技指導を行「電分野から、軽微な低圧電気工」 っています。

同時に機械切削加工での各種測定|習得に努めて参りました。 工具等の実用使用法、取扱法の指 導も行っています。

また. 各種工作機械を利用し実験 装置、実習補助具等の製作も行っ ています。

【知能機械、ロボット】

機械実習初心者にも安全で分かり|機械を動かすための電気複合技 事までの電気・電子制御技術の

> プログラム学習用ロボットの開 発では、機械部品加工、電子回 路設計、プリント基板設計、組 み立てまで電気、機械総合的な 製作を行いました。

【3Dプリンターを使った造形】

3 D プリンターによる積層造形 を利用した. 各種試作を行ってい ます。その中で、最小限のモデリ ング材、サポート材による造形工 夫や. 設計段階で強度を考慮した 部品分割による、造形時間の短縮 から、コスト低減工夫した造形を 行っています。

また, 造形物と金属部品を組み合 わせた. ハイブリッド的な部品製 作も予定しています。

主要設備・得意とする技術

機械実習工場に設置されている汎用、NC旋盤、工作機械を利用した各種機械加工、実験装置製作。 実用電子回路設計、プリント基板製作、電子工作から軽微な低圧電気工事までの実用作業。 次世代加工機(3Dプリンター等)を活用した、各種設計、造形製作。

産官学連携や地域貢献の実績と提案

メカトロで遊んでロボットに強くなろう。(2005年 機械工学科公開講座) 3 Dプリンターでレスキュー笛を造形する夏季科学教室(2015年 教育研究支援センター公開講座)

研究分野 機械工学
所属部門 計測・制御

北野 公崇 技術職員 教育研究支援センター kitano@fukui-nct.ac.jp

専門分野

精密計測・幾何光学

キーワード

光ファイバ変位計、3次元特性、等方性

所属学協会・研究会

精密工学会

研究テーマ

【光ファイバを応用した等方的3次元特性をもつ変位計】

光ファイバ変位計3組を応用し、球に対する XYZ 方向 (3次元) 感度が等方的な変位センサを開発します。 現在、幾何光学に基づくシミュレーションにより、光学変位センサの特性を研究しています (図 1)。高感度かつ等方的3次元特性をもつ光学変位センサの実現により、方向依存の測定誤差をナノメートルオーダーまで小さくできる可能性があります。応用例として、三次元座標測定機のタッチプローブの研究を行ってきました (図 2)。



図 1. 反射光線の幾何光学的な導出

図 2. 3D タッチプローブ (応用例)

主要設備・得意とする技術

【得意とする技術】

- ・光ファイバ変位計の高感度化・設計・試作
- 各測定対象形状に対する光ファイバ変位計の特性シミュレーション
- ・三次元座標測定機用タッチプローブの寸法測定誤差低減方法の提案

産官学連携や地域貢献の実績と提案

【研究提案】

- ・6自由度変位ベクトルが計測可能な光学変位センサの提案
- ・等方的3次元特性を応用した計測機器の提案

所属部門	計測・制御
研究分野	自動制御
	佐藤 匡 教授

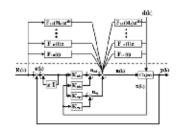
佐藤 匡 教授 電気電子工学科 制御工学研究室 tsato@fukui-nct.ac.jp

専門分野

自動制御, 自動計測

キーワード

予見制御, スライディングモード制御, 入力制限問題 所属学協会・研究会

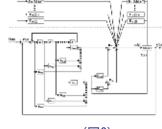

システム制御情報学会、信号処理学会、日本工学教育協会

研究テーマ

【ディジタル予見スライディングモード制御系構成法】

●目標値の未来情報を利用しシステムの応答改善を図る予見 制御と、外乱やパラメータ変動に強い可変構造制御の一種で あるスライディングモード制御の特徴を併せ持つ制御系構成 法です。

全系を一括で設計する手法と、基本となる系に補償器を付加 する手法があります。(図1)


(図1)

【繰り返し予見スライディングモード制御系構成法】

●周期性のある目標値に対応できる予見スライディングモード 制御系構成法。外乱に強く位相遅れ改善効果があります。(図2)

【離散有限個の入力による制御器設計法】

●線形アンプを必要としない、離散値制御の一種。システムの 構造を簡単にし、効率改善効果が期待できます。

(図2)

主要設備・得意とする技術

倒立振子実験装置を管理しています。制御 CAD ソフト Matlab および Simulink を用いた制御器設計設計から 実装までをシームレスに行えます。

- ・公開講座「自律ロボット製作入門」
- 各種装置の自動計測および自動制御

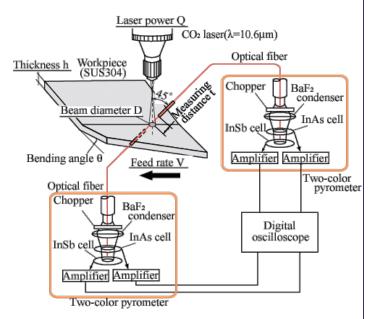
所属部門	計測・制御
研究分野	機械工学

千徳 英介 准教授 機械工学科 生産加エシステム研究室 sentoku@fukui-nct.ac.jp

専門分野

生産工学・加工学

キーワード


温度計測,切削抵抗,工具摩耗,レーザフォーミング 所属学協会・研究会

精密工学会, 砥粒加工学会, レーザ加工学会, トライボロジー学会

研究テーマ

【切削およびレーザ加工の加工温度モニタリング】

- ●目的:熱電対などでは難しい切削やレーザの 加工点の温度を高応答,高精度に測定します。
- ●特徴:加工点から放出される赤外線を検出 Thickness h し、温度に変換するため非接触で温度場を乱さ ずに温度測定が可能です。
- ●成果例: レーザによる塑性加工法であるレーザフォーミング加工に適用し、左図のような温度モニタリングシステムを構築して、変形メカニズムの解明と加工量の制御パラメータとしての加工温度の可能性を示しています。
- ●社会との関わり:加工温度の観点から加工プロセスを検証し、加工技術や工具の開発に貢献しています。

主要設備・得意とする技術

- ●主要設備:マシニングセンタ (森精機, NV4000)
- ●得意とする技術:
- ・ドリル加工、エンドミル加工時の切削抵抗と切削温度の測定
- ・レーザ加工時の加工温度測定

産官学連携や地域貢献の実績と提案

●実績:

- ・地元メーカーと外部助成金を獲得し、切削工具の高度化に関する研究を行いました。
- ・簡単な工作を行う小学校向けの出前授業や中学生向けの公開講座などものづくりに関する活動を 行ないました。

●提案:

・切削加工、レーザ加工の高度化や課題解決に関する技術相談、共同研究を行います。

所属部門	計測・制御
研究分野	流体工学

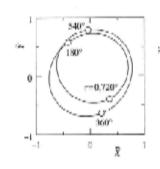
田中 嘉津彦 教授 機械工学科 液圧研究室 katanaka@fukui-nct.ac.jp

専門分野

液圧工学、トライボロジー

キーワード

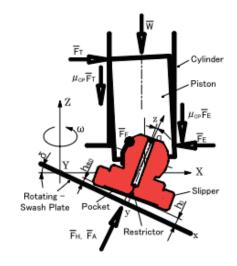
液圧機器、トライボロジー、最適設計


所属学協会・研究会


日本機械学会、日本フルードパワーシステム学会

研究テーマ

【液圧機器における基本しゅう動要素の最適設計法 の提案】

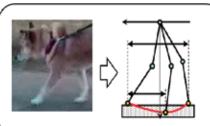

トライボロジー(摩擦・摩耗・潤滑の総称)の観点から液圧機器の基本しゅう動要素の一つであるピストンの運動特性を検討し、機器の効率と信頼性の向上が図れるしゅう動部形状に関する設計法の確立を目指しています。下図は、数値計算と実験により明らかとなったシリンダ内のピストンの運動軌跡の例です。

【液圧機器におけるハイブリッド軸受の基本特性】

液圧機器には、静圧と動圧の二つの効果を有した軸 受が多用されており、一般的な軸受とは異なり、シー ルと軸受の相反する機能が要求されています。両機能 は、同要素の運動特性と密接に関係しており、下図の ようなモデルを提案し、混合潤滑解析を踏まえた基本 的な運動特性を解析しています。このような解析結果 を通して、ハイブリッド軸受の特性評価を行い、基本 的な設計指針の提示を目指します。

主要設備・得意とする技術

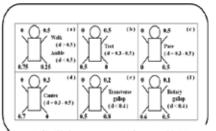
- ・液圧機器で用いられているピストンの摩擦特性や運動特性を実験的に調査するためのモデル機を保有しています。同モデル機では、スリッパ軸受の運動特性を調査することも可能です。
- ・機械システムにおけるしゅう動部のトライボロジー問題に、実験と理論の両面からアプローチしています。


- ・しゅう動部の摩擦特性に関する実験および数値計算
- ・しゅう動要素の運動挙動
- ・なじみ運転条件の検討

所属部門	計測・制御	
研究分野	知覚情報処理	専門分野
	西 仁司 准教授 電子情報工学科 nishi@fukui-nct. ac. jp	シミュレーション、信号解析、工学教育 キーワード 歩行ロボット、画像解析、ものづくり 所属学協会・研究会 電子情報通信学会、レーザー学会、工学教育協会

研究テーマ

【歩行ロボットの歩容生成】


- 歩くロボットは人間社会との整合性が高く、さまざまな利用形態に期待
- →ロボットセラピー分野への応用を目的に、ロボットの歩容生成手法を提案
- 動物らしい歩き方を実現するために、遺伝的アルゴリズム、動物学、人間の感性など複数の手法を利用 した歩き方の評価を実施

動物の歩容からのパラメータ抽出

- 単脚の歩容生成

動物学を利用し4足歩行へ拡張

人間の感性を取り入れた総合的な評価

動物らしい歩容

【FM一括変換方式における特性シミュレーション】

- 周波数分割多重された信号を一括してFM変調して光ファイバ伝送
- →伝送帯域の効率的な利用, E/0変換時の非線形特性に対する耐性
- システムの伝送特性を決めるパラメータの特定に向けた研究

主要設備・得意とする技術

・4 足歩行ロボット「AIBO」, 2 足歩行ロボット「PALRO」等を利用した。ロボット体験出前授業の実施

- ・公開講座「FMラジオを作ろう」「簡単!マイコンでプログラミング」(実績)
- ・出前授業「越前市中学ロボットコンテスト製作教室」(実績)
- ・出前授業「AIBOと遊ぼう」(実績)
- ・出前授業「LEGOでロボットを作ろう」(実績)
- ・メガネ枠製造業者様とさばえメガネワクwakuコンテスト優秀作品の試作(実績)
- ・共同研究「生産技術の向上に関する研究」(実績)

所属部門	計測・制御
研究分野	機械力学・制御

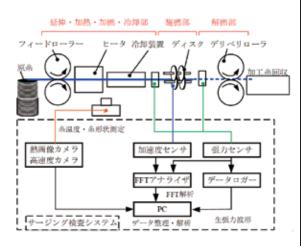
林田 剛一 技術職員 教育研究支援センター hayashida@fukui-nct.ac.jp

専門分野

機械設計, 繊維

キーワード

仮撚加工、機械設計、シーケンス制御、空圧機器


研究テーマ

【仮撚加工機におけるサージングに関する研究】

衣服などに用いられます伸縮性を有する糸を生産する、 仮撚加工機の研究を行ってきました。

仮燃加工の問題として、加工速度を上昇させることで糸が不安定に挙動する現象「サージング」が発生することが 挙げられます。同現象は糸切れ・未解撚糸の増加等、加工 後の糸品質を低下させます。

そこで筆者らはサージングを解明し同現象の抑制に寄 与するため、サージングによる糸の挙動変化等を、画像解 析を始めとした様々な方法で観察しています。

主要設備・得意とする技術

【得意とする技術】

- ・シーケンス制御を用いた簡単な装置製作が可能です。 PLC等を用いた制御やラダー回路の構築も可能です。
- ・空圧機器を用いたシステム構築が可能です。 空気圧回路図の作成・説明が可能です。

- ・地元の小学生を対象とした出前授業を行いました (H29:熱風車の制作)。そこで得られた経験より、受講者の安全に配慮した科学実験をすることできます。
- ・R2年度:公開講座「小学生夏休み親子科学教室」に参加予定
- ・R2年度:科学教室「Ooho!入りハーバリウムを作ろう」に参加予定
- ・その他出前授業等を通し、科学・工学の面白さを伝える活動を行っていきたいと考えています。

所属部門	計測・制御
研究分野	知覚情報処理・知能ロボティクス

村田 知也 講師 電子情報工学科 知識情報処理演習室 murata@fukui-nct.ac.jp

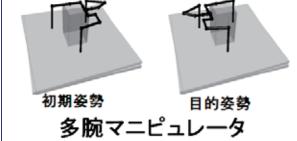
専門分野

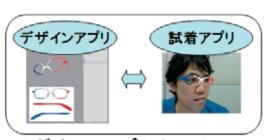
制御工学、画像処理、パターン認識、ゲーム学キーワード

ロボット経路計画、画像認識、ゲームアプリ

所属学協会・研究会

情報処理学会、ロボット学会、次世代ロボット研究会・ 北陸


研究テーマ


【マニピュレータの経路計画】

● マニピュレータとはロボットアームのことです。そのマニピュレータを初期姿勢から、障害物と干渉 しない目的姿勢までの経路を計算する問題は経路計画と呼ばれています。従来の方法では膨大な計算量が 必要になるので、高速化のできる手法を提案します。また画像認識を利用してトマトの収穫ロボットの開 発をしています。

【メガネをバーチャルに試着する研究】

● 映像やセンサーを使って顔や体を認識することで、メガネをバーチャルに試着することができ、リアルタイムにデザインが可能になるアプリケーションの開発を行います。

メガネのアプリケーション

主要設備・得意とする技術

- ロボットマニピュレータの経路計画シミュレーション。
- i-0S. Android 端末を使ったアプリケーションの作成。
- 画像処理による物体検出と認識。

- トマト収穫ロボットの開発
- 眼鏡企業との研究開発
- ご当地におけるゲームアプリの開発

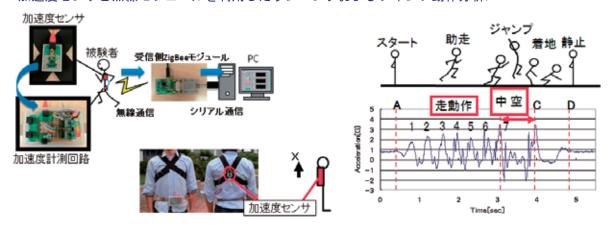
計測・制御
計測工学

米田 知晃 教授 電気電子工学科 計測工学研究室 yoneda@fukui-nct.ac.jp

専門分野

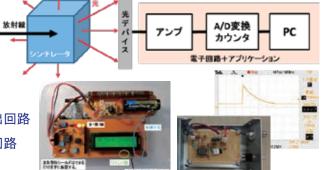
イオンビーム工学, センサ工学, 計測工学 キーワード

イオンビーム、放射線、センサ、回路設計


所属学協会・研究会

応用物理学会、米国物理学会、日本工学教育協会

研究テーマ


【慣性センサ(加速度センサ、ジャイロセンサ)を利用した運動動作計測】

- 加速度センサを用いたバスケットボール競技におけるワン・ハンドシュート動作分析
- 加速度センサと無線モジュールを利用したランニングおよびジャンプ動作分析.

【教育用放射線検出用電子回路に関する研究】

- PIN フォトダイオードを用いた放射線検出回路
- GM 管を用いた簡単な放射線検出回路
- 波形整形回路とカウンタ回路
- 展示用ガスフロー計数管の作成
- PHA (Pulse Hight Analysis) 回路
- CsI(TI)シンチレータと MPPC を用いた放射線検出回路
- 放射線検出回路用のトランス昇圧型高電圧発生回路

主要設備・得意とする技術

- ·3D プロッタ, プリント基板加工機を管理しており, 樹脂加工や回路基板設計などに利用しています。
- ・GM サーベイメータ、シンチレーションサーベイメータ、環境放射線モニタ
- ・イオン注入やイオン散乱分光のコンピュータシミュレーション技術

- ・イオンビームを用いた薄膜表面分析
- ・防災対策のための河川における水位計測システムの開発
- ・原子力防災に関する講演会