国際共同研究 Niagara Project と Matrix Art

津山高専 一般・数学 有本 茂

M. Spivakovsky (France)

P.G Mezey (Canada)

Niagara Project

J. Leblanc (America)

Matrix Art

The First Trigger of the Niagara Project

(and the Main Theme in a Challenge Seminar in Tsuyama National College of Technology)

Fig. 1 3D Magic Mountain and 2D Magic Mountain

Fig. 2 Carbon Nanotube Energy Band

Corning Glass Museum

The Second Trigger of the Niagara Project

On the way to Niagara Water Fall, the idea of the joint project was born

Interdisciplinary Region

between Science, Technology, and Art

Corning Glass Museum

Idea of the Niagara Project

(The second trigger of the Niagara Project)

Niagara Project (2010 ~): Extension of Fukui Project (1992 ~)

- International (Japan, Canada, France)
- Interdisciplinary (Math & Science & Art)
- Inter-generational (Experts & Students)

Self-Similarity (Mandelbrot set)

How to make Magic Mountain

Magic Mountain =
$$\sum_{n=0}^{\infty}$$
 Pyramid(n)

In other words, Magic Mountain is the infinite sum of the pyramid functions called Pyramid(n) which are given in what follows.

Pyramid function: Pyramid(n)

$$n = 0, 1, 2, 3$$

The 4th Approximation of Magic Mountain =

Pyramid(0) + Pyramid(1) + Pyramid(2) + Pyramid(3)

The 4th and 10th Approximations of Magic Mountain

The 30th Approximation of Magic Mountain and its Matrix Pattern: 2D Magic Mountain (Logo of the Niagara Project)

Publications

The Matrix Art employed in Tsuyama NCT has recently been published in the international Journal of Mathematical Chemistry, Springer

- S. Arimoto, Fundamental notions for the second generation Fukui project and a prototypal problem of the normed repeat space and its super spaces, J. Math. Chem. 49 (2011) 880].
- S. Arimoto, M. Spivakovsky, E. Yoshida, K.F. Taylor, and P.G. Mezey, Proof of the Fukui conjecture via resolution of singularities and related methods. V, J. Math. Chem. (2010) Digital Object Identifier (DOI) 10.1007/s10910-011-9852-1 Springer Online

Self-Similarity 自己相似性 (Mandelbrot set 2Dフラクタル)

問題1:魔の山を「進化」させて、優美な3Dフラクタルはできないか?

問題2:赤青メガネで立体視できる3Dフラクタルはできないか?

Anaglyph of MagicMt(π) = 3 D・フラクタル城 (問題 2 の答)

Time Evolution to $MagicMt(\pi)$

MagicMt(
$$\theta$$
) = $\sum_{n=0}^{\infty} \cos(n\theta)$ Pyramid(n)

$$\theta = \frac{0\pi}{30}, \frac{1\pi}{30}, \frac{2\pi}{30}, \frac{3\pi}{30}, \frac{4\pi}{30}, \frac{5\pi}{30}, \dots, \frac{29\pi}{30}, \frac{30\pi}{30}$$

Time Evolution for the first 9 minutes

19

Fukui Project (1992~): Niagara Project (2010~) の母体

A project with:

Central theory: Repeat Space Theory (RST)

Guiding conjecture: Fukui Conjecture

• International (Japan, Canada, France)

• Interdisciplinary (Math & Science & Art)

Kenichi Fukui (1918 – 1998, Nobel Chemistry Prize 1981)

Repeat Space Theory (RST)

理論と経験の巡回的相互作用

(From: A. Einstein's Hand-writing)

Haruo Shingu (1907-1988) Fukui's teacher and collaborator

Mannigfaltigkeit der unmittelbaren (Sinnen-) Erlebnisse

直接(感性)経験の多様性

Mathematical Fields Related to the RST

The **RST** uses techniques from the following branches of mathematics:

- Functional Analysis (especially the theory of Banach spaces, Operator Algebra)
- General Topology
- Ring Theory (especially the theory of UFDs)
- Algebraic Geometry (especially the theory of Resolution of Singularities)

Logical Interface Language (LI L)

Fundamental Molecular Properties Investigated by Using the Repeat Space Theory (RST)

- Zero-point Vibrational Energy (ZPVE) : E_{zero} (Prototypical)
- Internal Energy: E_T
- Heat Capacity: C_v
- Total Pi Electron Energy (TPEE): E_π
- Superdelocalizability: S_r (notion from the Frontier Electron Theory)

Logical Interface

Definitions 5.1. Let L denote the topological space with the underlying set $\{T, F\}$ and the system of open sets $o_T = \{\emptyset, \{F\}, \{T, F\}\}$. The topological space L is called the *logical space*. Let X, X_1, \ldots, X_n be topological spaces, let $\pi : X \to L$ be a continuous mapping, let $\rho_1 : X \to X_1, \ldots, \rho_n : X_{n-1} \to X_n$, and $\rho_{n+1} : X_n \to L$ be continuous mappings such that the following diagram

is commutative, i.e., such that

$$\pi = \rho_{n+1} \circ \dots \circ \rho_1. \tag{5.1}$$

The mapping π is called a *logical interface* on X. Each ρ_i , $1 \le i \le n+1$, is called a *component* of π . Equality (5.1) is called a *component analysis* of π .

Notation 3.1. Let $I = [a, b](a, b \in \mathbb{R}, a < b)$ denote a closed interval.

 $V_I(\varphi)$: the total variation of a real-valued function φ on I, i.e.,

$$V_{I}(\varphi) = \sup_{\Delta} \sum_{i=1}^{n} \left| \varphi(t_{i}) - \varphi(t_{i-1}) \right|,$$

$$\Delta : a = t_{0} \leqslant t_{1} \leqslant \dots \leqslant t_{n} = b.$$
(3.11)

- BV(I): the set of all real-valued functions of bounded variation on I, i.e., the set of all real-valued functions φ on I such that $V_I(\varphi) < \infty$.
- CBV(I): the normed space of all real-valued continuous functions of bounded variation on I equipped with the norm given by

$$\|\varphi\| = \sup\{ |\varphi(t)| \colon t \in I\} + V_I(\varphi). \tag{3.12}$$

AC(I): the normed space of all real-valued absolutely continuous functions on I equipped with the norm given by

$$\|\varphi\| = \sup\{ |\varphi(t)| \colon t \in I\} + V_I(\varphi). \tag{3.13}$$

- P(I): the set of all polynomial functions with real coefficients defined on I.
- : the closure operation on a topological space.
- B(X, Y): the normed space of all bounded linear operators from a normed space X to a normed space Y.
- $CBV(I)^*$: the dual space of CBV(I), i.e.,

$$CBV(I)^* = B(CBV(I), \mathbb{R}). \tag{3.14}$$

 $AC(I)^*$: the dual space of AC(I), i.e.,

$$AC(I)^* = B(AC(I), \mathbb{R}). \tag{3.15}$$

Proof. (i) Under the assumptions of the theorem, consider the mapping $\pi_0: X \to L$ defined by

$$\pi_0(\varphi) = \begin{cases} T & \text{if } \{\tau_N(\varphi)\} \text{ is a Cauchy sequence,} \\ F & \text{if } \{\tau_N(\varphi)\} \text{ is not a Cauchy sequence.} \end{cases}$$
(4.11)

Then, because B is complete, we see that

$$\pi = \pi_0. \tag{4.12}$$

But, theorem 4.4 below implies that π_0 is continuous. Hence, π is continuous.

- (ii) Suppose that X_0 is a subset of X with $\pi(X_0) = \{T\}$. Then by (i), we have $\pi(\overline{X_0}) \subset \overline{\pi(X_0)}$. This implies that $\pi(\overline{X_0}) \subset \{T\}$. The opposite inclusion $\pi(\overline{X_0}) \supset \{T\}$ is obvious.
- (iii) By (ii), it remains to prove that the operator τ is linear and bounded. Since τ_N is linear, the linearity of τ is obvious. The boundedness follows from the relations:

$$\|\tau(\varphi)\| = \left\| \lim_{N \to \infty} \tau_N(\varphi) \right\|$$

$$= \lim_{N \to \infty} \|\tau_N(\varphi)\|$$

$$= \lim_{N \to \infty} \|\tau_N(\varphi)\|$$

$$\leq \left(\lim_{N \to \infty} \|\tau_N\| \right) \|\varphi\|$$

$$\leq \left(\sup\{\|\tau_N\| \colon N \geqslant 1\} \right) \|\varphi\|. \tag{4.13}$$

Repeat Space Theory (RST) and the Developmental Theory of Cultural Anthropology

Structure 1

Structure 2

Structure 3

Structure 4

Repeat Spaces

RS1. Original Repeat Space $X_r(q)$: Jordan algebra

RS2. Extended Repeat Space $Y_r(q)$: algebra

RS3. Generalized Repeat Space $X_r(q, d)$: algebra

RS4. Normed Repeat Space $Xr(q, d, p)^*$: Banach algebra, C*-algebra

* Published: Normed repeat space and its superspaces: fundamental notions for the second generation Fukui project, S. Arimoto, J. Math Chem 46, 586 (2009).

Published: Proof of the Fukui conjecture via resolution of singularities and related methods I-V, S. Arimoto, etal, J. Math Chem 47, 856 (2010).

Magic Mountain Castle

3D Object having Self Similarity

Thank you!

御清聴有難うございました。

Outside the space AC(I)

ALTEC: The ALT cannot be extended to C(I).

Kenichi Fukui (1918 - 1998)

The Fukui Conjecture (Main Part).

Let $\{M_N\}$ be a fixed element of $X_r(q)$ (the repeat space with block-size q), and let I be a fixed closed interval on the real line such that I contains all the eigenvalues of M_N for all positive integers N. Let $f_0: I \to R$ denote the function defined by

$$f_0(t) = \frac{\hbar}{2} |t|^{1/2}.$$

Then, there exist real numbers α and β such that

$$f_0(\lambda_i(M_N)) = \operatorname{Tr} f_0(M_N) = \alpha N + \beta + o(1)$$

as
$$N \to \infty$$
.

The Functional Asymptotic Linearity Theorem that proves the Fukui conjecture

Theorem A (Functional ALT, $X_r(q)$ -version). Let $\{M_N\} \in X_r(q)$ be a fixed repeat sequence, let I be a fixed closed interval compatible with $\{M_N\}$. Then, there exist functionals α , $\beta \in AC(I)^* = B(AC(I), R)$ such that

$$\operatorname{Tr}\varphi(M_N) = \alpha(\varphi)N + \beta(\varphi) + o(1)$$

as $N \to \infty$, for all $\varphi \in AC(I)$.

Local Analyticity Proposition => Functional ALT => Fukui Conjecture

特異点解消

Z_{ξ} Plotting of $C_n H_{2n+2} (0.46 \le \xi \le 0.54)$

Internal Energy of $C_n H_{2n+2}$ as $T \rightarrow 0$ (°K)

Molar Heat Capacity of $C_n H_{2n+2}$ T = 298.15, 400, 500, ..., 1000 (°K).

Buddha's Terrace (from F-project) to investigate the ALTEC (from Challenge Seminar with Mr. T. Fukuda)

ALTEC: The ALT cannot be extended to C(I). Proved!

Banach Space AC(I)

M. Spivakovsky (France)

P.G Mezey (Canada)

J. Leblanc (America)

